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We address the spectral properties of Mott insulators with orbital degrees of freedom, and investigate cases
where the orbital symmetry leads to Ising-type superexchange in the orbital sector. The paradigm of a hole
propagating by its coupling to quantum fluctuations, known from the spin t-J model, then no longer applies.
We find instead that when one of the two orbital flavors is immobile, as in the Falicov-Kimball model, trapped
orbital polarons coexist with free hole propagation emerging from the effective three-site hopping in the regime
of large on-site Coulomb interaction U. The spectral functions are found analytically in this case within the
retraceable path approximation in one and two dimensions. On the contrary, when both of the orbitals are
active, as in the model for t2g electrons in two dimensions, we find propagating polarons with incoherent
scattering dressing the moving hole and renormalizing the quasiparticle dispersion. Here, the spectral func-
tions, calculated using the self-consistent Born approximation, are anisotropic and depend on the orbital flavor.
Unbiased conclusions concerning the spectral properties are established by comparing the above results for the
orbital t-J models with those obtained using the variational cluster approximation or exact diagonalization for
the corresponding Hubbard models. The present work makes predictions concerning the essential features of
photoemission spectra of certain fluorides and vanadates.
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I. INTRODUCTION

A hole propagates coherently in the valence band of a
band insulator with an unrenormalized one-particle disper-
sion �i.e., determined by electronic structure calculations�,
whereas hole propagation in a Mott insulator is a nontrivial
many-body problem. The paradigm here is a hole doped in
the half-filled one-band Hubbard model that is a minimal
model used to describe the parent compounds of high-Tc
superconductors. Such a hole forms a defect in the antiferro-
magnetic �AF� background, and its coherent propagation
may appear then only on a strongly renormalized energy
scale.1 Naively, i.e., considering the Néel state induced by
Ising-type spin interactions, one expects that a propagating
hole would disturb the AF background and generate a string
of broken bonds, with ever increasing energy cost when the
hole creates defects moving away from its initial position.
This suggests hole confinement as realized already 4 decades
ago.2 Nevertheless, the quantum nature of this problem leads
to a new quality: a hole in the AF Mott insulator can propa-
gate coherently on the energy scale J, which controls AF
quantum fluctuations,3–5 because they heal the defects arising
on the hole path. Crucial for this observation is the presence
of transverse spin components ��Si

+Sj
−+Si

−Sj
+�, responsible

for quantum fluctuations in the SU�2�-symmetric Heisenberg
exchange interactions.

In contrast, the orbital interactions which induce alternat-
ing orbital �AO� order are known to be more Ising type6

�classical� and quantum fluctuations are then either substan-
tially reduced7 or even absent. Perhaps the most prominent
example of robust orbital order occurs for degenerate eg
orbitals in the ferromagnetic �FM� planes of LaMnO3.8

Orbital interactions are there induced both by the lattice

�due to cooperative Jahn-Teller effect� and by the
superexchange9—both of them are classical, Ising-type inter-
actions, thus the quantum fluctuations are to a large extent
suppressed. Therefore, the orbital order is more robust than
the spin order in two-dimensional �2D� models,10 and a
higher hole concentration is required to destroy it.11 In the
three-dimensional case off-diagonal �interorbital� hopping,
where eg orbital flavor is not conserved,12 may even lead to
an orbital liquid phase already at rather low hole doping.13

Another difference to the SU�2� spin model is that a hole
in a ferromagnet with AO order of eg orbitals can propagate
coherently without introducing any string states. This coher-
ent propagation arises due to the eg interorbital hopping, but
is strongly renormalized by orbital excitations.14 However, in
the t2g systems the interorbital hopping is forbidden by
symmetry,12 and the superexchange is purely Ising type so
the above established mechanisms of coherent hole propaga-
tion in the regime of large on-site Coulomb repulsion U, i.e.,
for t�U where t is the hopping element, are absent. One
may then wonder whether a hole doped to a Mott insulator
with the t2g AO order would then be confined.15

The present paper is motivated by the above important
difference between the spin physics and the orbital physics,
especially prominent in the hole motion in the t2g orbital
systems.15 In spin models, the Ising-type superexchange rep-
resents only a rather poor approximation for the SU�2�-
symmetric Heisenberg spin exchange �as obtained in the t-J
model by its derivation from the Hubbard model16� and
could merely serve as a starting point for the full SU�2�-
symmetric calculations.17 In contrast, in the systems with t2g
orbital degeneracy the Ising superexchange follows from a
similar derivation as an accurate description of charge exci-
tations in the second order of the perturbation theory in the
regime of t�U, in cases when only two orbitals are active
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�see below�. Strictly speaking, in these realistic orbital sys-
tems the Ising-type superexchange occurs in a two-band
model when precisely one orbital flavor permits the hopping
along each bond, as only then the orbital flavor cannot be
exchanged and the pseudospin �Ti

+Tj
−+Ti

−Tj
+� operators are

absent in the respective t-J model.18 Such a situation is found
not only in the above-mentioned t2g model but also in three
other distinct orbital models �see below�. Hence, in the fol-
lowing paragraphs we give a brief overview of these four
models with realistic Ising superexchange for which the
spectral function of a single hole doped into the half-filled
ground state will be studied in this paper.

As a first example we introduce the spinless Falicov-
Kimball �FK� model, which describes itinerant d electrons
coupled to localized f electrons. On sites occupied by an f
electron, the d electrons feel a strong on-site Coulomb repul-
sion U. The FK model can be solved exactly in infinite
dimensions,19 where it leads to a complex phase diagram
including periodic ground states as well as a regime of phase
separation. When the energies of two involved orbitals are
degenerate �which is not the case in 4f or 5f materials�, one
finds that electron densities in the two orbitals are the same
�nd=nf�, and second-order perturbation theory leads in the
regime of large U to a strong-coupling model with one mo-
bile flavor. One finds, therefore, the ground state with the AO
order formed by sites occupied by d and f electrons on the
two sublattices. The spectral density for the mobile d elec-
trons can be obtained as well in one20 and two dimensions,21

but computation of the f spectral density is quite involved
even at infinite dimension.22 Below we will discuss exact
one-dimensional �1D� and approximate 2D analytic results
for the relevant FK models.

A second and different realization of the effective low-
energy model with Ising superexchange was proposed
recently15 for FM planes in transition-metal oxides with t2g
orbital degeneracy: In this case, both orbital flavors are
equivalent �the third one is inactive� and both allow for elec-
tronic hopping; however, each one permits the hopping along
one axis only. Despite the 1D character of the kinetic energy
in such a model, the ground state at half filling has 2D AO
order, stabilized by the Ising superexchange. Electron propa-
gation, on the other hand, is strictly 1D so a hole replacing
an electron with either orbital flavor may only move in one
direction by the hopping t. Such a situation might be realized
in Sr2VO4, where the crystal field splits the t2g orbitals,23 and
one finds indeed AO order24 in the weakly FM planes.25 A
different possible realization of such a model is found in
cold-atom systems,26 with strongly anisotropic hopping in
the spinless p-orbital Hubbard model.27

The third realization concerns systems with peculiar eg
AO and is somewhat subtle. As described above in the “well-
known” systems with active eg orbitals �such as the perov-
skite manganites�, the hole can propagate coherently due to
the interorbital hopping.13 However, one can identify two
peculiar cases of eg AO order where the interorbital hopping
is strongly reduced between the orbitals occupied in the
ground state, and the question of the hole confinement in the
Ising superexchange model is of high relevance. The first one
is realized in the FM planes of K2CuF4 �Ref. 28� and the
other one in the recently investigated Cs2AgF4.29 While the

AO order is formed in these cases by eg orbitals, crystal field
stabilizes their particular linear combinations with alternat-
ing x2−z2 /y2−z2 eg orbitals,30 and thus suppresses the inter-
orbital hopping present, for instance, in the ground state of
the manganites. In addition, the phase factors of two orbitals
along each bond allow for the hopping only along one direc-
tion in the plane12 so one arrives at a situation similar to that
found for strongly correlated electrons in t2g orbitals—it will
be discussed in the Appendix. Thus, the model called t2g
model throughout this paper is expected to describe a wider
class of transition-metal oxides.

Finally, another case where the AO order could in prin-
ciple lead to the hole confinement is the situation encoun-
tered in the 1D eg model in which the interorbital hopping
and quantum fluctuations are suppressed by symmetry. Since
this model is actually equivalent to the 1D FK model dis-
cussed above, we will refer to it later simply as to the “1D
model.” Its study was stimulated by the experimental find-
ings in the lightly hole-doped vanadates such as
La1−xSrxVO3.31 There the ground state for x=0.1 is an insu-
lating three-dimensional FM phase with AO order at x
=0.10. The physical origin of the Mott insulating state in the
case of such a finite hole doping is not yet understood.
Again, a natural question could be whether the peculiar sta-
bility of the Mott insulating state is related to the presence of
the AO order. Since it is obvious that the hole can move in
the AO state in the plane �due to the interorbital hopping, see
above�, it is interesting to verify whether the AO order along
the third direction could block the hole motion.

The four above cases are, to our knowledge, the only
straightforward models in which the full superexchange is
purely classical, i.e., where Ising superexchange follows
from the orbital symmetry, and is not an approximation to
the Heisenberg Hamiltonian.32 The superexchange models,
however, have to be extended by the second-order three-site
hopping terms in each case. Such effective hopping terms
arise in the same order of the perturbation theory when holes
are present, and are necessary for a faithful representation of
the spectral weight distribution in one-particle and in the
optical spectra of the underlying spin Hubbard model.33

Therefore, also in the present orbital t-J models with Ising
superexchange similar terms are expected to play an impor-
tant role and cannot be neglected. Moreover, while in the
spin case such terms are in conflict with the quantum fluc-
tuations and give, thus, only minor quantitative corrections
to the coherent hole motion,34 in the orbital �pseudospin�
models with Ising superexchange they become of crucial im-
portance as they are the only possible source for coherent
carrier propagation �the Trugman loops35 with the hole re-
pairing the defects on its path are absent here� and dictate
possible coherent processes.15 To get a better understanding
of the balance between the coherent and incoherent processes
in the orbital strong-coupling models �i.e., t-J models with
three-site terms�, we analyze their spectral properties in some
detail below.

In order to arrive at a comprehensive and rather complete
understanding of the elemental processes which accompany
hole propagation in the orbital models, we not only combine
numerical and analytical approaches but we also calculate
the spectral properties both of the strong coupling and of the
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respective Hubbard models. Hence, we first determine the
Green’s functions using the self-consistent Born approxima-
tion �SCBA� and the analytical treatments applied to the
above-mentioned orbital strong-coupling models. This al-
lows us to identify the dominant mechanism responsible for
the quasiparticle �QP� behavior. We note that for finite dop-
ing such methods as the slave boson approach, the path-
integral formalism, or the numerical approaches are much
more suitable for the t-J-like models than the SCBA.36 How-
ever, in the one-hole limit the SCBA gives reasonably good
results which are in agreement with other methods.5,36 We
then compare these results to those obtained for the respec-
tive orbital Hubbard model. Here, in some cases we deter-
mine Green’s functions numerically by use of exact diago-
nalization on small clusters, and in others we use the
variational cluster approach �VCA�,37 where a cluster is
solved exactly and then embedded into a larger system. This
variational approach is based on cluster perturbation theory
developed in the last decade,38–40 and corresponds to taking
the self-energy from a small cluster and optimizing it with
respect to mean-field terms arising due to the AO order. The
embedding via the self-energy approach41 allows us to in-
clude long-range �orbital� ordering phenomena by optimiz-
ing a fictitious field due to the AO order. This method is
appropriate for orbital Hubbard models with on-site interac-
tions. Since the exact solution on the cluster is obtained for
the full Hamiltonian, it contains all potentially relevant pro-
cesses such as, e.g., the three-site hopping.

The paper is organized as follows. The 1D orbital model
is introduced in Sec. II, whereas its extension to the 2D FK
model is discussed in Sec. III. In both sections, we introduce
the respective Hubbard-type Hamiltonian, derive from it the
appropriate strong-coupling Hamiltonian, and calculate ana-
lytically the hole Green’s function for the AO state at half
filling. Next, we introduce an exactly solvable 1D model
with three-atom units along the chain �Sec. IV�, called the
1D “centipede” model. The latter model �which was not
mentioned above� serves merely as a didactic tool and ex-
plains the essence of string excitations present in the 2D
model with t2g orbital flavors, which is discussed thoroughly
in Sec. V. Here, again we start from the orbital Hubbard
model, derive its strong-coupling version, and calculate the
hole Green’s function for the AO state at half filling using
two approximate methods described above: the SCBA and
the VCA. In Sec. VI we include longer-range hopping in the
2D t2g model �as expected in real materials� and discuss the
main experimental implications of our study by calculating
the photoemission spectra of certain vanadates and fluorides.
General conclusions are presented in Sec. VII. The analysis
is supplemented by the Appendix, where we derive the ef-
fective strong-coupling model for the above-mentioned fluo-
rides and prove that the t2g model discussed in Sec. V may
indeed be applied to the hole motion in the systems with a
particular type of eg orbital order.

II. 1D ORBITAL MODEL WITH ISING SUPEREXCHANGE

A. Effective strong-coupling model

As explained in Sec. I, the Ising-type superexchange fol-
lows if only one orbital flavor permits hopping along each

bond, and the spins are polarized in the FM state. The sim-
plest case which captures the essential features of the effec-
tive strong-coupling model with Ising-type superexchange
follows from the 1D orbital Hubbard model

H1D = − t�
i

�ai
†ai+1 + H.c.� + U�

i

nianib, �2.1�

where ai
† �bi

†� creates a spinless electron with orbital flavor a
�b� at site i, and �nia ,nib� are electron-density operators. On-
site Coulomb repulsion U is the energy of a doubly occupied
state �it arises as a linear combination of the Coulomb and
Hund’s exchange in the respective high-spin configuration7�,
and t is the nearest-neighbor �NN� hopping element. Only
electrons with orbital flavor a are mobile while the other
ones with flavor b cannot hop. To simplify, we call below the
a and b orbitals mobile and immobile ones, respectively.
This situation corresponds to �spinless� interacting eg elec-
trons in the FM chain42 or to the 1D �spinless� FK model
with degenerate orbitals.

In the regime of large U, i.e., for t�U, second-order per-
turbation theory leads to the effective strong-coupling
Hamiltonian with Ising-type superexchange

H1D = Ht + HJ + H3s, �2.2�

where

Ht = − t�
i

�ãi
†ãi+1 + H.c.� , �2.3�

HJ =
1

2
J�

i
�Ti

zTi+1
z −

1

4
ñiñi+1� , �2.4�

H3s = − ��
i

�ãi−1
† ñibãi+1 + H.c.� . �2.5�

Here a tilde above a fermion operator indicates that the Hil-
bert space is restricted to unoccupied and singly occupied
sites, e.g., ãi

†=ai
†�1−nbi�. The pseudospin operators are de-

fined as follows:

Ti
z =

1

2
�ñib − ñia� , �2.6�

and the superexchange constant J and the effective hopping
parameter � are given by

J =
4t2

U
, � =

t2

U
. �2.7�

We introduced above the parameter � in order to distinguish
below between the terms which originate from the pseu-
dospin superexchange and the hopping processes arising
from the superexchange via the three-site terms that lead to
the second- or third-neighbor effective hopping and contrib-
ute to the hole dispersion in the strong-coupling regime.
Note that � is of the same order �t2 /U as J so a priori these
terms cannot be neglected. But similar as for constrained
hopping term �2.3�, their contribution is proportional to hole
doping x. The 1D t-J orbital model HtJ=Ht+HJ, i.e., without
the three-site hopping H3s, was solved exactly before42 and
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all excitations occurred to be dispersionless. Here we gener-
alize this exact solution to full strong-coupling Hamiltonian
�2.2� including the three-site terms, and show that the spec-
tral functions for both orbital flavors are then distinctly dif-
ferent.

B. Analytic Green’s functions

We calculate below the exact Green’s functions Ga�k ,��
and Gb�k ,�� which demonstrate whether and how a hole
added to an a �or b� orbital may propagate coherently along
a 1D chain with the AO order. Interestingly, both functions
can be determined analytically using retraceable path
approximation43 �RPA�, which becomes exact here because
closed loops are absent in the 1D system.44

An important simplification as compared with the spin
case is the knowledge of the exact ground state �0	 at half
filling. As the Hamiltonian given by Eq. �2.2� does contain
then only the Ising superexchange, the Néel state

�0	 = 

i�A

ai
†


j�B

bj
†�vac	 , �2.8�

with a orbitals occupied on the sublattice A and b orbitals
occupied on the sublattice B is an exact ground state. Here
�vac	 is the true vacuum state with no electrons, while �0	 is
the physical vacuum at half filling.

We start with the Green’s function for the hole doped in
the mobile a orbital,

Ga�k,�� = lim
�→0

�0�ak
† 1

� + H1D − E0 + i�
ak�0	 , �2.9�

where E0 is the energy of the physical vacuum at half filling
�0	, ak

† is a Fourier transform of the �aj
†� operators with j

�A, and the hole is created by the operator

ak =� 2

N
�
j�A

e−ikRjaj , �2.10�

with N /2 being the number of sites in one sublattice. By
construction, the above operator creates a hole �annihilates
an electron� with momentum k on the A sublattice. After a
hole is created, one finds that the state ak�0	 in Eq. �2.9� is an
eigenstate of Hamiltonian �2.2�. The hopping �t is blocked
by the constraint in the Hilbert space, and the only two terms
that contribute in this state are: �i� superexchange term �2.3�,
which gives the energy 1

2J of two missing bonds, and �ii�
three-site hopping term �2.5�, which contributes to the k de-
pendence due to the processes shown in Fig. 1�a� after Fou-
rier transformation. As a result, one finds

Ga�k,�� =
1

� +
1

2
J + 2� cos�2k�

. �2.11�

Note that ñib1 in H3s, as in this case all the sites with j
�B are occupied by b electrons in the ground state �Eq.
�2.8��. The hole spectral function,

Aa�k,�� = −
1

�
Im Ga�k,�� , �2.12�

consists of a single dispersive state, shown as the middle
peak in Fig. 1�d�. As expected, the hole is mobile thanks to
the three-site terms and it propagates coherently with the
unrenormalized bandwidth W=4�. The result obtained here
is identical with the one found using the VCA for corre-
sponding Hubbard model �2.1� �see also Fig. 5 of Ref. 15�.

b axis

������������������������������������������������������������

a b

(a)

b axis

��������������������������������������������������

(b)

b axis

��������������������������������������������������

(c)

-2 -1 0 1 2
ω / t

A
(k

,ω
)

b a b
π

π/2

0

(d)

FIG. 1. �Color online� Hole propagation in 1D strong-coupling
model �2.2�. Two top panels show a hole doped into �a� mobile a
orbitals �empty boxes�, and �b� immobile b orbitals �filled boxes�.
Solid �dashed� arrows indicate possible hopping processes with
hopping elements t and �, respectively. In case of a hole added to
the b orbital the latter process occurs only after the initial hopping
by t; see panel �c�. Panel �d� shows the exact spectral functions
Aa�k ,�� and Ab�k ,�� of a hole added into the a orbital �middle
dispersive feature between �=−0.4t and �=0� and the b orbital
�two side dispersionless maxima� as obtained from 1D strong-
coupling model �2.2�. Parameters: J=0.4t, �=0.1t, and peak broad-
ening �=0.01t. The spectral functions obtained using the VCA for
1D Hubbard model �2.1� with U=10t �not shown� are identical to
the exact result.
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This confirms that both orbital Hubbard model �2.1� and its
strong-coupling version with three-site terms �Eq. �2.2�� are
equivalent and describe precisely the same physics in the
regime of t�U.

When one attempts to calculate the Green’s function for a
hole doped in the immobile b orbital,

Gb�k,�� = lim
�→0

�0�bk
† 1

� + H1D − E0 + i�
bk�0	 , �2.13�

one finds immediately that the state

��k
�1�	  bk�0	 =� 2

N
�
j�B

e−ikRjbj�0	 , �2.14�

is not an eigenstate of the Hamiltonian H1D. Here a hole is
doped in each Fourier component in an occupied b orbital at
site j in the ground state with AO order �Eq. �2.8��. When a
hole is doped it can delocalize to its neighbors in the 1D
chain, as depicted in Fig. 1�b�, so one has to introduce ap-
propriate basis of states obtained when the single hole delo-
calizes along the 1D chain. The hopping Ht acting on ��k

�1�	
generates the first �normalized� state

��k
�2�	 

1
�N

�
j�B

e−ikRj�aj−1 + aj+1�aj
†bj�0	 , �2.15�

with the hole delocalized to the neighboring j−1 �j+1� sites
of the A sublattice, i.e., to the left �right� from the initial hole
position j in each Fourier component �bj	 included in Eq.
�2.14�. The remaining states ���k

�n�	� with n	2, which occur
in the continued fraction expansion needed to evaluate the
Green’s function Gb�k ,�� �see below�, are generated by act-
ing �n−2� times on ��k

�2�	 with the three-site hopping term
H3s. In this way one finds the set of symmetric states, with a
superposition of the hole propagating forward �either to the
left or to the right from the initial defect�, i.e., along the same
direction as that given by the first hop which led to ��k

�2�	; cf.
Fig. 1�c�. This structure of the basis set explains the absence
of the k dependence in the Green’s function for b orbitals so
we adopt the simplified notation Gb��� below.

In the infinite basis generated by the above-described pro-
cedure, the Hamiltonian matrix of Hamiltonian �2.2� reads

��k
�m��� + H1D − E0��k

�n�	

=�
� + J/2 �2t 0 0 ¯

�2t � + 3J/4 � 0 ¯

0 � � + J � ¯

0 0 � � + J ¯

¯ ¯ ¯ ¯ ¯

� .

�2.16�

In order to calculate the relevant Green’s function Gb���, we
need the �1,1� element of the inverse of this matrix. Due to
the tridiagonal form of the Hamiltonian, this can be done
even for an infinite Hilbert space, and we arrive at a contin-
ued fraction result,

Gb��� = ���k
�m��� + H1D − E0��k

�n�	−1�1,1

= �� +
1

2
J −

2t2

� +
3

4
J −

�2

� + J −
�2

� + J − ¯

�
−1

,

�2.17�

where the whole self-similar part can be summed up to the
self-energy which does not depend on k,43


��� 
�2

� + J −
�2

� + J −
�2

� + J − ¯

=
�2

� + J − 
���
.

�2.18�

This, together with Eq. �2.17�, leads to a quadratic equation
for 
��� with two solutions,


��� =
1

2
��� + J� � ��� + J�2 − 4�2� . �2.19�

The proper sign may be determined using the Green’s func-
tion Gb��� obtained before42 in the limit of �=0,

Gb
�0���� = �� +

1

2
J −

2t2

� +
3

4
J�

−1

. �2.20�

In this limit the self-energy vanishes, 
���=0, and the
Green’s function has two poles at energies

� = −
5

8
J � �2t�1 +

1

128
� J

t
�2

. �2.21�

Finally, we arrive at the general result for �	0,

Gb��� = �� +
1

2
J −

4t2

� +
1

2
J � ��� + J�2 − 4�2�

−1

,

�2.22�

where the sign convention is fixed by comparing this result
with the Green’s function Gb

�0���� �Eq. �2.20��: This implies
that one has to select − �+� sign for �−J ��	−J�, respec-
tively.

Due to the obtained analytic structure of Gb��� the hole
spectral function

Ab��� = −
1

�
Im Gb��� , �2.23�

shown in Fig. 1�d�, also does not depend on k. For the real-
istic parameters with � t it consists of two poles and the
incoherent part centered around �=−J. This latter contribu-
tion has rather low intensity and is, thus, invisible on the
scale of Fig. 1�d�, and the two peaks absorb almost the entire
intensity. This result resembles the case of �=0 �Eq. �2.21��,
and might appear somewhat unexpected—we analyze it in
Sec. II C.
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C. Hole confinement in a three-site box

First, we comment on the absence of the k dependence in
the spectral function Ab��� �Eq. �2.23��. It suffices to analyze
the hole in a b orbital at any finite value of J which induces
the AO ground state �Eq. �2.8��. The hole can only move
incoherently because once it moves away from the initial site
j �see Figs. 1�b� and 1�c��, it creates a defect in the AO state
which blocks its hopping by the three-site processes over the
site j �see Eq. �2.14��. Consequently, the hole may hop only
in the other direction, i.e., away from the defect in the AO
state, and in order to absorb eventually this orbital excitation,
it has to come back to its original position, retracing its path.
In this way forward and backward propagations along the 1D
chain interfere with each other, resulting in the fully incoher-
ent spectrum of Fig. 1�d�.

Looking at the spectral function Ab��� of a hole doped
into the b orbital at finite �=0.1t shown in Fig. 1�d�, one may
be somewhat surprised that the result indicates only two final
states of the 1D chain. These are the bonding and the anti-
bonding states of a hole confined within a three-site box, and
discussed in detail in Ref. 42 in the limit of �=0. One finds
that the two excitation energies obtained for the present pa-
rameters, �=−1.67t and �=1.17t, are indeed almost un-
changed from those given by Eq. �2.21� at �=0. We note that
the third nonbonding state has a different symmetry and,
thus, gives no contribution to Ab���.

Altogether, one finds that in the realistic regime of param-
eters with �=J /4, the incoherent part of the spectrum is ex-
tremely small and, thus, invisible in the scale of Fig. 1�d�.
This implies that the hole is still practically trapped within
the three-site box depicted on Fig. 1�b�, in spite of the po-
tential possibility of its delocalization by finite �. Only when
the value of the three-site hopping � is considerably in-
creased, the hole can escape from the three-site box, and may
delocalize over the entire chain.

A systematic evolution of the spectral function Ab��� with
increasing � is depicted in Fig. 2. One observes that the
incoherent spectral weight grows with increasing � and is
already visible in between the two maxima for �=0.5t. When

the three-site hopping term approaches �= t, the spectrum
changes in a qualitative way—both peaks are absorbed by
the continuum, and the spectral density resembles the density
of states of the 1D chain with the NN hopping. For the ex-
tremely large effective hopping ��2t the two peaks corre-
sponding to the energies given by Eq. �2.21� are entirely
gone, and the spectrum corresponds to the incoherent delo-
calization of the hole over the 1D chain. Note also that finite
J results only in an overall shift of the spectra due to the
energy cost of the hole excitation in the ordered ground state
�Eq. �2.8��.

III. 2D SPINLESS FALICOV-KIMBALL MODEL

A. Effective strong-coupling model

There are two essentially different ways to generalize the
1D orbital Hubbard model with one passive orbital flavor to
two dimensions in such a way that the superexchange re-
mains still Ising type. Either �i� one allows that the electrons
with mobile flavor a can hop along all the bonds, i.e., in both
directions in the square lattice, or �ii� one allows that a elec-
trons can hop along the bonds parallel to the b axis, and b
electrons can hop along the bonds parallel to the a axis. The
first scenario leads to a special case of the 2D FK model �see
below�, while the second one describes spinless electrons in
t2g orbitals of a FM plane and will be analyzed in Sec. V.

In analogy to the 1D model of Sec. II, the 2D FK model
describes interacting electrons in mobile a and immobile b
orbitals,

HFK = − t�
�ij	

�ai
†aj + H.c.� + U�

i

nianib. �3.1�

Here we used the same notation as in Eq. �2.1�, and �ij	 are
the bonds �pairs of NN sites� in the 2D lattice. This Hamil-
tonian shows complex physics45 and phase separation21 away
from half filling. In contrast to the usual situation with large
energy difference between f and d orbitals,19 we will con-
sider degenerate a and b orbitals. Then the ground state at
half filling �i.e., one electron per site� and large Coulomb
interaction U is relatively straightforward to investigate, and
one finds the robust AO order rather than phase separation.

Again, we can perform second-order perturbation theory
in the regime of t�U as above. For the present square lattice
there are two types of three-site terms—they contribute �i�
along a and b axes due to forward �linear� processes and also
�ii� connect next-nearest-neighbor �NNN� sites along the di-
agonals of each plaquette in the 2D lattice, along two 90°
paths. The resulting strong-coupling effective Hamiltonian
reads

HFK = Ht + HJ + H3s
�l� + H3s

�d�, �3.2�

where

Ht = − t�
�ij	

�ãi
†ãj + H.c.� , �3.3�

HJ =
1

2
J�

�ij	
�Ti

zTj
z −

1

4
ñiñj� , �3.4�
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FIG. 2. �Color online� Spectral function Ab��� of a hole doped
into the b orbital in the 1D model with �a� �=0, �b� �=0.5t, �c� �
= t, and �d� �=2t. Dotted �solid� lines for J=0 �J=0.4t�, respec-
tively, with broadening �=0.01t.
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H3s
�l� = − ��

i

�ãi−â
† ñibãi+â + H.c.� − ��

i

�ã
i−b̂

†
ñibãi+b̂ + H.c.� ,

�3.5�

H3s
�d� = − ��

i

�ã
i�b̂

†
ñibãi�â + H.c.� − ��

i

�ã
i�b̂

†
ñibãi�â + H.c.� .

�3.6�

Here â and b̂ are the unit vectors along the axes a and b,
while H3s

�l� and H3s
�d� terms stand for linear and diagonal pro-

cesses in the three-site effective hopping. The parameters J
and � are defined as in Eq. �2.7�, the orbital �pseudospin�
operators Ti

z are defined as in Eq. �2.6�, and again the tilde
above the fermion operators indicates that the Hilbert space
is restricted to the unoccupied and singly occupied sites.

B. Analytic Green’s functions

The Green’s function Ga�k ,�� for a hole in mobile a
orbitals, defined by Eq. �2.9�, can be calculated as straight-
forwardly as in the 1D model of Sec. II, and one finds

Ga�k,�� =
1

� + J + �k
, �3.7�

where the hole dispersion relation is given by

�k = − 4���cos kx + cos ky�2 − 1� . �3.8�

As in the 1D model �see Eq. �2.11��, the hole propagates
freely, resulting in a bandwidth of W=16�=4J. Indeed, in the
strong-coupling model �Eq. �3.2�� the hopping to the sites
occupied by b electrons is blocked by the constraint. The
spectral function Aa�k ,�� �Eq. �2.12�� obtained for the hole
in a orbitals consists, thus, of a single pole, as shown in Fig.
3�a�.

The dispersion relation of Eq. �3.8� can be compared with
the one of the lower Hubbard band obtained21 for FK model
�3.1� in the regime of U� t, where one finds dispersion

�k =
1

2
U�1 −�1 +

16t2

U2 �cos kx + cos ky�2�
� − 4��cos kx + cos ky�2. �3.9�

This result is the same �up to a nonsignificant constant� as
the one obtained in the strong-coupling limit �see Eq. �3.8��.
The Green’s function obtained for Hubbard-type model �3.1�
is shown in Fig. 3�b�. While it qualitatively agrees with the
result derived in the strong-coupling limit �Eq. �3.8��, it is
renormalized here and gives a somewhat reduced bandwidth
of the hole band. This indicates finite probability of double
occupancies which hinder the three-site effective hopping
processes, and reduce the order parameter from its classical
value as given in Néel state �2.8� �see also Sec. V E for a
similar discussion concerning the 2D t2g orbital model�.

As in the 1D model of Sec. II B, we use here the RPA to
calculate the Green’s function for a hole inserted into the
immobile b orbital. However, the RPA is no longer exact in
two dimensions because also paths with closed loops are
possible when electrons with one flavor are allowed to hop in

both directions. We use a similar basis of states ���k
�n�	� as for

the 1D calculation of Sec. II B to describe a single hole
doped to the plane with the AO order. Starting from the Néel
state as in Eq. �2.8�, the first two states are defined as fol-
lows:

��k
�1�	  bk�0	 =� 2

N
�
j�B

e−ikRjbj�0	 , �3.10�

��k
�2�	 

1
�2N

�
j�B

e−ikRj�aj−â + aj+â + aj−b̂ + aj+b̂�aj
†bj�0	 .

�3.11�

Here the first state ��k
�1�	 denotes the Fourier-transformed

states with hole doped into the immobile orbital at the initial
position in the ground state of the 2D lattice, with AO order
between two sublattices A and B, as in Eq. �2.8� �see Fig.
4�a��. This state may delocalize by the hopping t which in-
terchanges the hole with an occupied a orbital to the left,
right, down, or up from the initial site, resulting in the sym-
metric state with four external sites of the five-site polaron

−4 −3 −2 −1 0 1 2
(0,π)

(0,π)

(0,0)

(π,π)

(π,0)

ω / t
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,ω
)

b ba

(a)

−4 −3 −2 −1 0 1 2
(0,π)

(0,π)

(0,0)

(π,π)
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ω / t
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(k

,ω
)

ab b

(b)

FIG. 3. �Color online� The spectral functions for the 2D FK
model, as obtained for mobile a orbitals �middle dispersive feature
between �=−1.6 and �=0� and immobile b orbitals �two side dis-
persionless maxima�: �a� with the RPA of Ref. 43 for 2D FK strong-
coupling model �3.2� with J=0.4t and �=0.1t, and �b� by a numeri-
cal diagonalization of a 20�20 cluster for 2D FK Hubbard model
�3.1� with U=10t. Peak broadening �=0.01t.
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depicted in Fig. 4�b�—the resulting state is denoted above by
��k

�2�	 �Eq. �3.11��.
At this point, we have to introduce an approximation and

we will consider only these states ��k
�n�	 with n	2, which are

created on a Bethe lattice by nine possible forward-going
steps from ��k

�n−1�	. Therefore, all such states �with n	2� are
generated by the three-site effective hopping � so each of
them means that the hole has moved forward by �n−2� steps
from the symmetric state ��k

�2�	, being a linear combination of
the configurations with the hole at one of the external sites in
the five-site polaron �Fig. 4�. Hence, we make two approxi-
mations here, i.e., we assume that: �i� no closed loops occur
�RPA� and �ii� the number of forward-going steps is chosen
to be nine, which is the most probable number of possible
forward-going three-site steps on a square lattice with the
AO order.46 Let us emphasize, however, that the closed loops
which are neglected here do not lead to the delocalization of
the hole as these are not the so-called Trugman loops,35

where the hole could repair the defects by a circular motion
around a plaquette in the square lattice. The Hamiltonian
�Eq. �3.2�� matrix written in this basis is as follows:

��k
�m��� + HFK − E0��k

�n�	

=�
� + J 2t 0 0 ¯

2t � +
7

4
J + 2� 3� 0 ¯

0 3� � + 2J 3� ¯

0 0 3� � + 2J ¯

¯ ¯ ¯ ¯ ¯

� .

�3.12�

Again, as in Eq. �2.16�, the k dependence is absent, and the
Green’s function Gb��� can be calculated using continued
fraction method in a similar way as in the 1D case �cf. Sec.
II B� and we obtain

Gb��� = �� + J −
8t2

� +
3

2
J + 4� � ��� + 2J�2 − 36�2�

−1

,

�3.13�

where we select − �+� sign for �−2J ��	−2J�, respec-
tively.

The spectral function of a hole doped into the b orbital is
shown in Fig. 3�a�. It consists of two distinct dispersionless
peaks, and a dispersionless incoherent part with negligible
spectral weight �invisible on the scale of Fig. 3�a�� between
them. While the incoherent spectrum disappears in the limit
of vanishing three-site hopping �, the two dispersionless
peaks survive and the distance between them becomes 4t for
J→0. Hence, the doped hole is not only immobile but also
trapped within the five-site orbital polaron depicted in Fig.
4�a�—only four sites can be reached from the central site by
NN hopping t so the ground state can be found in the trun-
cated basis ���k

�1�	 , ��k
�2�	� �see below�. This situation re-

sembles very much the 1D case discussed previously, and
indeed the same discussion as the one for the hole confine-
ment in a three-site box presented in Sec. II C applies here.
In Sec. III C we discuss in detail the quantitative arguments
which suggest the hole confinement in this five-site polaron.

We would like to emphasize that the spectral functions
obtained using the RPA for strong-coupling model �3.2� are
almost identical to the ones obtained numerically by exact
diagonalization of Hubbard model �3.1� on a 20�20 lattice,
cf. Fig. 3�b�. This means that the crude assumption of walks
without closed loops made within the RPA approximation
�i.e., replacement of the square lattice by the Bethe lattice� is
a posteriori well justified for the strong-coupling model de-
fined by Eq. �3.2�. We provide also more arguments which
complete our understanding of this result in Sec. III C. Fur-
thermore, this means that not only the RPA method is correct
but also the two models �Hubbard and the strong-coupling
model� are fully equivalent and describe the same physics in
the considered regime of parameters.

Finally, we note that the results obtained by the VCA �not
shown� are very similar to the ones of exact diagonalization
if we use periodic boundary conditions. While open bound-
aries are usually optimal for the VCA,37 they can “cut” the
five-site polaron and lead to signals at wrong frequencies. In
a large enough cluster, these contributions from polarons
with less than five sites would have vanishing weight, but for
the cluster sizes considered here, self-energies with periodic
boundary conditions have to be used to eliminate them.

C. Localized five-site orbital polaron

The following comparison shows that the two dominant
peaks of the Green’s function for b orbitals Gb��� can be

(a)

3J/4

3J/4

3J/4

3J/4t

(b)

τ
FIG. 4. �Color online� Schematic view of a

five-site polaron which occurs after the removal
of one b electron in 2D FK model �3.2�. �a� Initial
state with a hole �empty circle� on B sublattice—
crosses represent immobile b electrons and filled
circles mobile a electrons. Five-site polaron is in-
dicated by the dotted line. �b� The hole may de-
localize within it to the nearest neighbors by hop-
ping t �solid line�, generating three broken bonds
which cost energy 3J /4 for each hopping pro-
cess. The hole can hop directly between the ex-
ternal sites �dashed line� by second-order three-
site hopping �=J /4 via a doubly occupied site
�outside the polaron�.
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well reproduced by taking into account the polaron alone,
i.e., by considering just a cluster of five sites depicted in Fig.
4�b� and neglecting the rest of the lattice. In this case the
problem can be solved by diagonalizing the Hamiltonian in
the basis consisting of two states defined in the last section:
��k

�1�	 �Eq. �3.10�� and ��k
�2�	 �Eq. �3.11��. This means that the

infinite matrix of Eq. �3.12� for the hole doped into the cen-
tral site of the polaron reduces to the 2�2 matrix, and one
obtains the energies of two poles of the Green’s function
Gb���, corresponding to the bonding and antibonding state
within the five-site polaron,

�1,2 = −
11

8
J − � ��4t2 +

9

64
J2 +

3

4
J� + �2. �3.14�

Assuming J=0.4t and �=0.1t in Eq. �3.14� we obtain
�1,2= �1.37t ,−2.67t�. This compares very favorably with the
results obtained for strong-coupling model �3.2�: �i� within
the RPA �see Sec. III B�, �1,2= �1.38t ,−2.69t�, and �ii� using
the numerical analysis of this model on the 20�20 lattice,
which gives �1,2= �1.40t ,−2.74t� �not shown�. We stress that
the excellent agreement between all these methods demon-
strates that the RPA �i.e., full continued fraction� turns out to
be only slightly better than the calculation restricted to the
five-site polaron of Fig. 4�b�. It means that the probability of
the configurations with the hole outside the five-site polaron
is indeed very low, and it explains why the RPA assumption
of having no walks with closed loops works here so well.
Lastly, we note that all these results agree quite well with the
numerical ones for itinerant FK model �3.1�; cf. Fig. 3�b�
with the peaks situated at �1=1.42t and �2=−2.56t.

The present five-site orbital polaron resembles the five-
site spin polaron identified in Monte Carlo studies for the 2D
Kondo model.47 For example, as for the spin polaron in the
Kondo model, the spectral density of the orbital polaron is
comprised of two dispersionless peaks with a distance of 4t
for J→0. There is, however, one difference: Here not only
the hole can move by direct NN hopping t between the cen-
tral site and the four external sites, but there is also a second-
order three-site diagonal hopping �Eq. �3.6��, which couples
directly the neighboring external sites of the polaron �see
Fig. 4�b��, and contributes to the energy of the ��k

�2�	 state.
Actually, due to the inclusion of these processes �which en-
able the smallest loops on the lattice, with two t and one �
hopping processes�, we could obtain the above-mentioned
perfect agreement between the numerical, the RPA, and the
five-site polaron results for the strong-coupling version of
FK model �3.2�. Otherwise, e.g., for J=0.4t the energies of
the two peaks in the RPA �five-site polaron� calculation
would be equal to �1.47t ,−2.58t� ��1.46t ,−2.56t��, respec-
tively, and would only rather poorly agree with the numerical
results of Eq. �3.2�.

Summarizing, the holes doped into the immobile orbitals
of the FK model are almost entirely localized within the
five-site orbital polaron of Fig. 4�b�. In order to calculate the
energy of this polaron correctly one has to take into account
the energies of the processes which involve four external
polaron sites. In addition, we note that the widely used
SCBA �Ref. 5� �used for the orbital strong-coupling model in

Sec. V� does not work so well for the case of hole doped into
the immobile orbital of the FK model, as it does not respect
the constraint on the hole motion. It incorrectly uses an on-
site energy of J instead of 3J /4 for the excitations at external
sites of the polaron. As shown above, the hole spends almost
all its time inside the polaron, and hence, this underestima-
tion of the energy heavily influences the energies of the poles
of the Green’s function in this case �e.g., the lowest peak for
J=0.4t is situated almost at −3t in the SCBA calculations
�not shown��.

IV. STRING EXCITATIONS IN THE 1D MODEL

The 1D model �Sec. II� and the 2D FK model �Sec. III�
bear the same generic features: �i� a hole generated in the
so-called mobile orbital always leads to the dispersive spec-
trum with the full unrenormalized bandwidth and �ii� a hole
doped into the so-called immobile orbital is localized, lead-
ing to a nondispersive spectral function. In this section we
investigate the consequences of string excitations, which
may arise when both orbital states allow only 1D hopping, as
in the case of two t2g orbitals lying in two vertical planes
with respect to the considered plane. Thus we will study the
1D model with electrons hopping between yz and zx orbitals
in �a ,b� plane—the model has only 2N sites for the chain of
length N �see Fig. 5�. We will show that even the shortest
possible strings with the length of one bond, which can be

a

b

������������������������������������������������������������������
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b
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ω / t

A
a(k
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π

π/2

0

(b)

FIG. 5. �Color online� Propagation of a hole added into the a
orbital in centipede strong-coupling model �4.3�: �a� schematic pic-
ture of a hole doped at site a and its possible delocalization via
hopping t �solid lines� and three-site effective � term �dashed lines�;
�b� spectral function Aa�k ,��. Parameters: J=0.4t, �=0.1t, peak
broadening �=0.01t. The chain is oriented along the b axis, and
nonequivalent positions of the orbitals which do not permit hopping
along this direction are labeled b, u, and d in panel �a�.
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excited here when the hole moves in this geometry, are suf-
ficient to generate some characteristic features recognized
later in the spectral properties of the 2D t2g model �see Sec.
V�.

The 1D model of Fig. 5�a� consists of a chain along b
axis, with the Hamiltonian as described by Eq. �2.1�, and two
sites being the NNs of every second site of the chain along
the a axis, which could represent radicals added to a linear
molecule. We use here the convention introduced before for
the t2g orbital systems48,49—that a and b orbitals stand for yz
and zx t2g orbitals, respectively, that permit the electron hop-
ping along the b and a axis in the �a ,b� plane. The Hamil-
tonian of the present �called here centipede� model is

Hc = − t�
i

�b2i
† �b2i,u + b2i,d� + H.c.� − t�

i

�ai
†ai+1 + H.c.�

+ U�
i

nianib. �4.1�

The hopping along the bonds parallel to the a axis is allowed
only to the orbitals b, with the corresponding creation opera-
tors �b2i,u

† ,b2i,d
† � �see Fig. 5�a��. To simplify notation, we call

these orbitals u and d, and introduce the following operators:

u2i
†  b2i,u

† , d2i
†  b2i,d

† . �4.2�

In the limit of large U �U� t� the occupied orbitals form
AO order along the chain, and we select the Néel state with
b �u and d� orbitals occupied on the external sites, as shown
in Fig. 5, as we are interested in their effect on the hole
propagation when it was doped to an a orbital. This leads to
the following strong-coupling version of 1D centipede model
�4.1�:

Hc = − t�
i

��ũ2i
† + d̃2i

† �b̃2i + H.c.�

− ��
i

�ã2i
† ñ2i+1,bã2i+2 + H.c.� −

3

4
J�

i

�ũ2i
† ũ2i + d̃2i

† d̃2i� .

�4.3�

Here again the parameters J and � are defined as in Eq. �2.7�,
the orbital �pseudospin� operators Ti

z are defined as in Eq.
�2.6�, and the tilde above the fermion operators indicates that
the Hilbert space is restricted to the unoccupied and singly
occupied sites.

On one hand, the superexchange interaction for all the
bonds within the centipede was not included in Eq. �4.3� as it
results only in a rather trivial energy shift of the spectra
obtained from the Green’s function Ga�k ,��, which is of
interest here50 �cf. Sec. II B�. On the other hand, the last term
in Eq. �4.3� was added to simulate the creation of string
excitations which occur in the full 2D model of Sec. V �see
also discussion below�.

Whereas the second term in Eq. �4.3� is once again the
three-site hopping derived before in 1D model �2.5� �cf. Fig.
5�a��, the other two terms describe the possibility of creating
defects in the AO order when the hole leaves the spine of the
centipede �i.e., moves away from the a sites� by creating
strings of length one, just as it may happen in the t2g 2D
model �see Sec. V�. Here the hole can leave the chain to its

NN orbital u2i or d2i �cf. sites attached to the chain along the
a axis shown in Fig. 5�a��. Such defects are created by hop-
ping t and costs energy 3J /4 in each case. Hence, the present
1D model represents an extreme reduction in the full t2g 2D
model, allowing only the strings of length one, and each
defect has to be deexcited before the hole can hop to another
three-site unit along the chain. Note however, that the ener-
gies of these string excitations are properly chosen and are
just the same as in the full 2D model of Sec. V.

The model given by Eq. �4.3� constitutes a one-particle
problem �after inserting ñ2i+1,b1, which is consistent with
the Ising nature of the superexchange� and, hence, can be
solved exactly. We will consider the Green’s function
Ga�k ,�� for a orbitals, defined similarly as in Eq. �2.9�, and
a hole excitation is created again by the operator ak of Eq.
�2.10�. The continued fraction terminates after the second
step and one finds the exact Green’s function

Ga�k,�� =
1

� + 2� cos�2k� −
2t2

� +
3

4
J

, �4.4�

leading to the corresponding spectral function Aa�k ,��, de-
fined as in Eq. �2.12�. The numerical results obtained with
J=0.4t are shown in Fig. 5�b�. Instead of a single dispersive
state of Fig. 1�d�, the spectral function consists here of two
dispersive peaks, separated by a gap of roughly 2�2t. This
demonstrates that the larger hopping t suppresses at first in-
stance the hopping along the chain by the element �, and a
hole doped into the a orbital delocalizes in first place over
the three-site unit, discussed in Sec. II C, consisting of a hole
and two b �u and d� orbitals. Therefore, the hole behaves
effectively as a defect created at a b site in the 1D chain of
Sec. II. This explains that the maxima of Aa�k ,�� are found
again for bonding and antibonding states, similar to the
structure of Ab��� in Sec. II B. However, at present the cor-
responding states gain weak dispersion because the hole may
as well delocalize along the chain by the three-site hopping
�. Note also that the low-energy �right� peak has slightly
higher dispersion �leading to a broader band� than the left
one. This case illustrates that the 1D dispersion is broader for
the QP state but is also shared by the feature at higher en-
ergy. This observation will help us to interpret the spectra for
the 2D t2g model in Sec. V.

In addition we also calculated some characteristic features
of the spectra of the centipede model �cf. Fig. 6�. They will
mostly serve for a comparison with the respective results of
the 2D t2g model, presented in Sec. V E. However, let us
only remark that the renormalization of the bandwidth,
shown in Fig. 6�a� follows from an intricate interplay be-
tween coherent hole propagation and the string excitations.
With increasing �=J /4 the free bandwidth increases but at
the same time the energies of the defects �generated by the
hole when it moves to “lower” or “upper” sites� are �J;
hence, the bandwidth does not depend in a linear way on J
�cf. Fig. 6�a��. Physically this means that the hole motion is
gradually more and more confined to just the 1D path along
the chain with increasing J �and keeping �=J /4�.
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V. 2D MODEL FOR t2g ELECTRONS

A. Effective strong-coupling model

After analyzing the spectral properties of the simpler 1D
model and 2D FK model, we consider below the model rel-
evant for transition-metal oxides with active t2g orbitals,
when the crystal field splits them into eg and a1 states, and
the doublet eg is filled by one electron per site. This occurs
for the d1 configuration �e.g., in the titanates� when the eg
doublet has lower energy than the a1 state, or for d2 configu-
ration when the eg states have higher energy and are consid-
ered here, while the a1 state is occupied by one electron at
each site and, thus, inactive �as in the high-spin ground state
of the RVO3 perovskites,51 where R stands for a rare-earth
element�. To be specific, we consider electrons with two t2g
orbital flavors, yza and zxb, moving within the �a ,b�
plane. In contrast to the FK model with two nonequivalent
orbitals and only one orbital flavor contributing to the kinetic
energy �Sec. III�, both t2g orbitals here are equivalent and
electrons can propagate conserving the orbital flavor by the
NN hopping t, but only along one direction in the �a ,b�
plane.48 While this results is a complicated many-body prob-
lem at arbitrary electron filling, the motion of a single hole
added at half filling remains still strictly 1D.15

The orbital Hubbard model for spinless electrons in the
FM �a ,b� plane reads

Ht2g
= − t �

�ij	�a
�bi

†bj + H.c.� − t �
�ij	�b

�ai
†aj + H.c.� + U�

i

nianib,

�5.1�

where a and b are the orbital flavors with the same hopping
t along b and a axis, respectively, and U stands again for the
on-site interaction energy for a doubly occupied configura-
tion. At the filling of one electron in �a ,b� orbitals per site
this interaction corresponds to the high-spin d2 �or d3� state.
Second-order perturbation theory applied to this Hamiltonian
in the regime of t�U leads then to the strong-coupling
model,

Ht2g
= Ht + HJ + H3s

�l� + H3s
�d�, �5.2�

where

Ht = − t�
i

�b̃i
†b̃i+â + ãi

†ãi+b̂ + H.c.� , �5.3�

HJ =
1

2
J�

�ij	
�Ti

zTj
z −

1

4
ñiñj� , �5.4�

H3s
�l� = − ��

i

�b̃i−â
† ñiab̃i+â + H.c.� − ��

i

�ã
i−b̂

†
ñibãi+b̂ + H.c.� ,

�5.5�

H3s
�d� = − ��

i

�ã
i�b̂

†
ãib̃i

†b̃i�â + H.c.�

− ��
i

�ã
i�b̂

†
ãib̃i

†b̃i�â + H.c.� . �5.6�

The parameters J and � are defined as in Eq. �2.7�, whereas
the pseudospin operators Ti

z are defined as in Eq. �2.6�. Again
the tilde above the fermion operators indicates that the Hil-
bert space is restricted to the unoccupied and singly occupied
sites. One interesting observation here is that the strictly 1D
kinetic energy of the two orbitals leads to 2D superexchange
�5.4�. As in the spin case,16 the superexchange is active only
when electrons with two different flavors occupy the neigh-
boring sites �one bond�, but here only one of them can hop,
which explains the prefactor 1

2 in Eq. �5.4�.
Instead of the quantum behavior and frustration present in

the compass model,52 here one finds that the perfect AO
ordered state �0	 �Eq. �2.8�� is the ground state of the model
at half filling. Figure 7 presents in a schematic way a few
first steps in the motion of a hole inserted at a selected site
into such a ground state. When the hole moves via NN hop-
ping t, it creates string excitations in each step that cannot be
healed by orbital flips because orbital superexchange �5.4� is
purely Ising type �see Fig. 7�c��. Moreover, it cannot heal the
defects by itself because it cannot complete a Trugman
loop35 when the orbital defects are created and three occu-
pied orbitals are moved anticlockwise on a plaquette after the
hole moved clockwise by three steps �see Fig. 7�d��.

The structure of Ht2g
�Eq. �5.2�� is somewhat similar to

that of the 2D FK model—one obtains again three-site terms
in the strong-coupling model along the axes �to third neigh-
bors� �Eq. �5.5��, as well as along the plaquette diagonals �to

0.0
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0.6

W
1,

2
/t

0.4
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J / t
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∆
/t
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FIG. 6. �Color online� Characteristic features in the spectra ob-
tained for the 1D centipede model �Fig. 5� for increasing J: �a� the
bandwidth W1,2, �b� the spectral weight aQP, and �c� the distance �

between the two peaks. The solid �dotted� line in �a� corresponds to
the first �second� dispersive peak in Aa�k ,��, whereas the solid
�dashed� lines in the lower panels show results for k=0 �k=� /2�.
The light solid line in �a� is merely a guide for the eyes to show that
the bandwidth of the first peak is a function with a positive second
derivative. Parameter: �=J /4.
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second neighbors� �Eq. �5.6��. However, there is now an im-
portant difference to the 2D FK model: While three-site
terms along the axes, given in Eq. �5.5�, involve a single
electron and conserve orbital flavor, terms along the diagonal
of Eq. �5.6� require the subsequent hopping of two electrons
with different orbital flavor in each step so the orbital flavor
�at the site where the double occupancy is created in the
excited state� is flipped. We will see later that such terms
flipping orbital flavor are in fact suppressed because, in con-
trast to the forward hopping along one of the cubic axes, they
disturb the AO order in the background and, thus, cost en-
ergy. As such, they do not affect the low-energy QP state, but
contribute only to the incoherent processes at higher energy.

To achieve a complete understanding of the excitation
spectra at half filling, we used two complementary methods
and investigated orbital Hubbard model �5.1� using the VCA,
and strong-coupling model �5.2� within the SCBA. Both
cases were supplemented by exact diagonalization for small
�4�4 and 4�6 sites� clusters. In the following Section we
formulate the SCBA treatment of the t2g model, next give
results of the SCBA calculations in Sec. V C, compare them
to a numerical VCA treatment in Sec. V D, and discuss the
QP properties in Sec. V E. Finally, the impact of longer-
range hopping pertinent to realistic materials is treated in
Sec. VI.

B. Hole-orbiton coupling in the t2g model

The calculation of spectral properties of the strong-
coupling model given by Eq. �5.2� is more involved than in
the previous cases. On one hand, in each such step by hop-
ping t the position of a hole is interchanged with an electron
and a defect in the AO state is created �see Fig. 7�. Therefore,
one arrives at a situation analogous to a hole which tries to

propagate in an antiferromagnet with the Ising interactions.4

On the other hand, the important new feature which makes
the present t2g problem more complex is that the electron
hopping t is now allowed for both orbital flavors. Thus, this
problem cannot be solved by the RPA,44 which was used to
determine the Green’s functions Ga�k ,�� and Gb�k ,�� of a
hole doped into the a and b orbital either in the 1D models or
in the 2D FK model. Moreover, this problem cannot be re-
duced to any effective one-particle Hamiltonian that one
could solve at least numerically for large clusters. Hence, we
use below the SCBA which gives quite reliable results in the
spin case.5 Here one finds that it is well designed to treat this
problem because several processes not included in the SCBA
drop out of Hamiltonian �5.2� for physical reasons �see be-
low�, and therefore, the approximation performs remarkably
well.

In order to implement the SCBA we have to reduce the
model of Eq. �5.2� into the polaron problem, following Ref.
5. First, we divide the square lattice into two sublattices A
and B, such that all the a �b� orbitals are occupied in the
perfect AO state in sublattice A �B�, respectively �see Eq.
�2.8��. Second, we rotate the orbital pseudospins on the A
sublattice �corresponding the down orbital flavor; see Eq.
�2.6�� so that all the pseudospin operators take a positive
value, �Ti

z	=1 /2, in the transformed ground state. Finally, we
introduce boson operators �i �responsible for orbital
excitations—orbitons7� and fermion operators hi �holons�,
which are related to the ones in the original Hilbert space by
the following transformation:

b̃i  hi
†�1 − �i

†�i�, ãi  hi
†�i. �5.7�

Note, that we added the projection operators �1−�i
†�i� to the

transformation relation for the b̃i fermions in order to keep
track of the violation of the local constraint that “no hole and
orbiton can be present at the same site” �cf. constraint C1 in
Ref. 5�.

Before writing down the polaronic Hamiltonian, we make
the following approximations: �i� keep only linear terms in
boson operators �as we use linear orbital-wave
approximation7�, �ii� skip �1−hi

†hi� and �1−�i
†�i� projection

operators when deriving the effective Hamiltonian �both sim-
plifications are allowed for the present case of one hole and
Ising superexchange�, and �iii� neglect the orbital-flipping
terms in Eq. �5.6� as generating the coupling between the
hole and two orbitons and leading to higher-order processes
in the perturbation theory. Then, after Fourier transformation,
Hamiltonian �5.2� reads

Heff = Ht + HJ + H3s
�l�, �5.8�

with

Ht =
z

�N
�
k,q

�M�k,q�hkA
† hk−qB�qA + N�k,q�hkB

† hk−qA�qB

+ H.c.� , �5.9�

HJ = �0�
k

��kA
† �kA + �kB

† �kB� , �5.10�

(a) (b)

(d) (c)

FIG. 7. �Color online� Schematic view of the hole motion in
strong-coupling t2g orbital model �5.1� with AO order. Circles de-
pict holes while horizontal �vertical� rectangles depict occupied or-
bitals with electrons that can move only horizontally �vertically�.
The hole inserted in the AO state �a� can move via NN hopping t,
but it has to turn by 90° in each step along its path and leaves
behind broken bonds, leading to string excitations with ever in-
creasing energy �b� and �c�. After moving by 270° around a
plaquette �d�, the hole cannot return to its initial position as would
be necessary to complete the Trugman path �Ref. 35�.
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H3s
�l� = �

k
��A�k�hkA

† hkA + �B�k�hkB
† hkB� , �5.11�

where z=4 is the coordination number of the square lattice,
the sums are over momenta k in the full Brillouin zone �BZ�
for the whole lattice,53 the total number of sites in the plane
is N, and indices A and B denote the orbiton operators in
both sublattices. The orbiton energy �0=J does not depend
on momentum k, and the vertices in Eq. �5.9� have 1D de-
pendence on momenta,

M�k,q� =
1

2
t cos�kx − qx� , �5.12�

N�k,q� =
1

2
t cos�ky − qy� , �5.13�

whereas the 1D hole dispersion arising from the propagation
within the sublattices in Eq. �5.11� are

�A�k� = 2� cos�2ky� , �5.14�

�B�k� = 2� cos�2kx� . �5.15�

C. Self-consistent Born approximation

Instead of calculating the hole Green’s functions Ga�k ,��
and Gb�k ,�� using their definitions �see Sec. II�, it is conve-
nient now to express them in terms of the operators used in
Eq. �5.8�. Hence, we introduce hole creation operators on
sublattice B,

hkB
† =� 2

N
�
j�B

e−ikRjhj
†. �5.16�

Next, using Eqs. �5.7� we obtain the relation

bk�0	 =� 2

N
�
j�B

e−ikRjbj�0	

=� 2

N
�
j�B

e−ikRjhj
†�1 − � j

†� j��0	 = hkB
† �0	 ,

�5.17�

since one does not have any pseudospin defects in the AO
ordered state �0	 �Eq. �2.8��. The latter feature is also respon-
sible for the fact that one cannot annihilate an electron with
the “wrong” flavor, e.g., in the b orbital on the A sublattice in
the ground state �0	, which justifies the above definition of
the Fourier transformation. While one still needs to perform
rotation of the pseudospin flavor on sublattice A, a similar
relation can be obtained for hkA

† operators. Finally, we obtain
that

GAA�k,��  lim
�→0

�0�hkA
1

� + Heff − E0 + i�
hkA

† �0	 ,

�5.18�

GBB�k,��  lim
�→0

�0�hkB
1

� + Heff − E0 + i�
hkB

† �0	 .

�5.19�

We calculate the above Green’s functions �Eqs. �5.18� and
�5.19�� by summing over all possible noncrossing diagrams
�i.e., neglecting closed loops� �cf. lower part of Fig. 8�. How-
ever, the crossing diagrams do not contribute here since the
closed loops �Trugman processes� do not occur �see Fig. 7�.
Since the structure of the present problem makes it necessary
that two Green’s functions and two self-energies are consid-
ered, we write the Dyson equation for each of them, as rep-
resented in Fig. 8,

GAA
−1 �k,�� = �GAA

�0��k,���−1 − 
AA�k,�� , �5.20�

GBB
−1 �k,�� = �GBB

�0��k,���−1 − 
BB�k,�� , �5.21�

where the free Green’s functions are given by

GAA
�0��k,�� =

1

� + J + �A�k�
, �5.22�

GBB
�0��k,�� =

1

� + J + �B�k�
, �5.23�

and the self-energies


AA�k,�� =
z2

N
�
q

M2�k,q�GBB�k − q,� − �0� , �5.24�


BB�k,�� =
z2

N
�
q

N2�k,q�GAA�k − q,� − �0� �5.25�

are obtained by summing up the rainbow diagrams of Fig. 8.
Note that the intersublattice Green’s function GAB�k ,�� van-
ishes since it would imply that at least one defect was left in
the sublattice B after the hole was annihilated in the sublat-
tice A, resulting in orthogonal states as there are no processes
in the Hamiltonian which cure such defects �cf. the form of
Hamiltonian �5.8� and Fig. 8�.

ΣBB
GBB = += ΣAA

G = +=AA

ΣBB + + + ... ==

FIG. 8. Diagrammatic representation of the perturbative proce-
dure used within the SCBA: top—the Dyson equation for the
GBB�k ,�� and GAA�k ,�� Green’s functions; bottom—the summa-
tion of diagrams for the self-energy 
BB�k ,��. The densely dotted
and the dashed-dotted rainbow lines in the self-energy �lower part�
connect the two vertices N�k ,q� and M�k ,q�, respectively.
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We solved Eqs. �5.20� and �5.21� together with Eqs.
�5.24� and �5.25� self-consistently on a mesh of 20�20 k
points �and checked the convergence comparing the results
with those obtained for the cluster with 32�32 k points�.
The spectral functions defined for the sublattices

Aa�k,�� = −
1

�
Im GAA�k,�� , �5.26�

Ab�k,�� = −
1

�
Im GBB�k,�� �5.27�

are displayed in Fig. 9. As discussed in detail in Ref. 15, the
spectral density consists of dispersive ladderlike spectrum
suggesting that the hole doped into any of the two orbitals is
mobile. The dispersion is particularly pronounced for the
first �low-energy� excitation which we identify as a QP state.
One finds that its dispersion is strictly 1D and is dictated by
the orbital flavor at the site where the hole was added, i.e., no
dispersion occurs in the complementary direction. For ex-
ample, a hole added to the a orbital moves �thanks to the
three-site terms� only along the b direction. However, such a
hole moving along the b direction due to the three-site terms
could also undergo incoherent scattering on orbital excita-
tions, and in addition performs “excursions” to the B sublat-
tice due to the t processes, which create stringlike states. The
peculiar interrelation of these two types of �coherent and
incoherent� propagation �which we discuss in detail in Sec.
V E� leads to the spectra depicted in Fig. 9.

The lack of the QP dispersion in one direction, e.g., along
the a direction for a hole doped into the a orbital, is at first
instance counterintuitive. One could imagine that it should
be allowed that the hole doped into the a orbital switches to
a neighboring site of the B sublattice by the t process, and
then propagates freely along the a axis by the three-site ef-
fective hopping � without generating any further defects.
This might lead to some dispersion in the spectra along the kx
direction. However, the hole always has to return to the
original site where it has been doped as it has to erase the
defect it created in the first t step when it moved to the other
sublattice �otherwise, the hole annihilation operator would
not permit to return to the ground state�. Note that this be-
havior is similar to the hole confinement in a three-site clus-
ter as calculated for the hole doped into the b orbital in the

1D model �cf. Fig. 1�.54 As a result of such processes, one
finds very small incoherent �and k-independent� spectral
weight in the spectra of Fig. 9, which remains invisible in the
present scale. This discussion demonstrates also that the
spectra found for the 2D t2g orbital model are dominated by
the 1D physics explained in Secs. II and IV.

Next, three remarks which concern the validity of our
results are in order here. First, note that if we skip the flavor-
conserving three-site terms �Eq. �5.11��, the calculated spec-
tral functions �not shown� reproduce the well-known ladder
spectra and are equivalent to those calculated for the Ising
limit of the spin t-J model.5 This means that the zigzaglike
hole trapping in the orbital case is physically similar to the
standard hole trapping in the spin case �apart from the modi-
fied energy scale due to a different value of the superex-
change, the ladder spectra are similar in both cases�, whereas
for the free hole movement obviously it matters whether the
dispersion relation is 1D or 2D. Moreover, this also means
that in this special case ��=0� the spectra are the same for
holes doped into either of the orbitals as the Green’s func-
tions are the same for both sublattices. However, even in this
case it is not allowed to assume a priori that A=B and
GAA�k ,��=GBB�k ,��. In fact, these are two sublattices with
two distinct orbital states occupied in the ground state at half
filling, and each orbital has entirely different hopping geom-
etry. This does not happen in the standard spin case with
isotropic hopping, and for this reason one can eliminate there
the sublattice indices.

Second, to obtain the result shown in Fig. 9 we neglected
the three-site terms with 90° hopping �see Eq. �5.6��. One
may wonder whether this approximation is justified whereas
the formally quite similar forward hopping term �5.5� is cru-
cial and is responsible for the absence of hole confinement in
the ground state with the AO order.15 Hence, let us look in
more detail at these two different kinds of three-site terms,
shown in Fig. 10. The first �linear� hopping term �5.5� trans-
ports an a electron along the b axis over a site occupied by a
b electron. Such processes are responsible for the 1D coher-
ent hole propagation. As we can see in Figs. 10�a�–10�c�, the
AO order remains then undisturbed so these processes deter-
mine the low-energy features in the spectra. Hopping by the
other three-site term �5.6�, shown in Figs. 10�d�–10�f�, in-
volves an orbital flip at the intermediate site, destroys the AO
order on six neighboring bonds, and thus costs additional
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FIG. 9. Spectral function as obtained in the SCBA for effective t2g model �5.8� for a hole doped into: �a� a orbital and �b� b orbital.
Parameters: J=0.4t, �=0.1t, and peak broadening �=0.01t.
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energy. As two orbitals are flipped and two excited states are
generated, these processes go beyond the lowest-order per-
turbation theory, and it is consistent to neglect them in the
SCBA. In any case, they could contribute only to the inco-
herent processes at high energy and not to the low-energy
QP. Indeed, this interpretation was confirmed by exact diago-
nalization performed for strong-coupling Hamiltonian �5.2�
on 4�4 and 4�6 clusters, which gave the same results for
the QP dispersion, no matter whether the orbital-flipping
terms �Eq. �5.6�� were included or not. In addition, the QP
dispersion found in the SCBA agrees with the numerical re-
sults obtained by the VCA �see below�, which gives further
support to the present SCBA.

Lastly, despite several other approximations made in writ-
ing down Hamiltonian �5.8�, the vertex part Ht is exact, in
contrast to the Ising interaction for spins.5 The reason is that
the constraint C1 mentioned above and in Ref. 5, which
states that a hole and a boson excitation are prohibited to
occur simultaneously at the same site, cannot be violated
here because hopping t is strictly 1D. This can be checked
either by looking at Ht and verifying that the projection op-
erators �1−�i

†�i� can be skipped without changing the phys-
ics, or by looking at the photoemission spectra in the limit of
J→0. Whereas we did both of these checks, let us note here
that for J=0 one obtains the incoherent spectrum with a

bandwidth of Winc=4�2t �not shown�, which �unlike in the
spin case� perfectly agrees with the RPA result Winc
=4�z−2t from Ref. 43, where z−2 is the number of possible
forward-going steps in our model. However, still the three-
site terms H3s

�0� and the orbiton terms HJ are not exact in Eq.
�5.8�, and thus, we checked the present results by comparing
them with the numerical spectra obtained for orbital Hubbard
model �5.1�—the results are presented in Sec. V D.

D. Comparison with numerical VCA results

Since the problem of a hole added to the background with
the AO order of t2g orbitals cannot be solved exactly using
analytic methods and the SCBA had to be employed in Sec.
V C, we used also a numerical approach. Actually, we com-
pare the analytic results for strong-coupling model �5.2� pre-
sented in Sec. V C with those obtained for t2g Hubbard
model �5.1� using VCA. This enables us to compare not only
the methods employed but also the two models which stand
for the same physics in the strongly correlated regime.

We first use the VCA to determine the staggered orbital
moment in the ground state of t2g orbital Hubbard model
�5.1�,

mstagg 
1

N
�

i

eiQ·Ri���ñib − ñia�	� , �5.28�

with Q= �� ,�� corresponding to the 2D AO order. We com-
pare this result to the similar ones obtained for the spin Hub-
bard model and for the eg orbital Hubbard model for a 2D
plane �the strong-coupling model corresponding to the latter
situation was studied in Refs. 10 and 14�. As expected, mstagg
increases with decreasing J �increasing U� �see Fig. 11�. For
J→0 �U→��, mstagg→1 for both orbital models, corre-
sponding to the perfect �classical� 2D Ising-type order, while
quantum fluctuations reduce the moment mstagg in the spin
model. We remark that the treatment of the quantum fluctua-
tions within the VCA is far from perfect �and limited by
actual cluster size� so the staggered magnetization reaches
mstagg�0.85 in the limit J→0 �Fig. 11�, and does not repro-

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. �Color online� Schematic representation of two three-
site terms in t2g orbital model �5.2�. Circles depict holes while hori-
zontal �vertical� rectangles depict occupied orbitals with electrons
that can move only horizontally �vertically�, respectively. Processes
shown in panels �a�–�c� result from forward propagation �5.5�,
while the ones shown in panels �d�–�f� and given by Eq. �5.6� create
a defect in the AO order with the energy cost indicated by the lines
�broken bonds� in �f�.
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FIG. 11. �Color online� Staggered magnetization mstagg for in-
creasing J / t as obtained for the t2g orbital Hubbard model, spin
Hubbard model �called Hubbard on the figure�, and for the eg or-
bital Hubbard model, respectively.
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duce the value of 0.606, well known from the spin-wave
theory.55

In all three models, staggered moment �5.28� obtained
using the VCA decreases with decreasing U �increasing J;
see Fig. 11� because the kinetic energy can then generate
more doubly occupied sites in the ground state. One finds
that both the eg and t2g models give very similar results for
the staggered moment, but differ strongly from the SU�2�-
symmetric spin model, as has been shown before in three
dimensions.13 However, we note that orbital order is slightly
weaker for eg orbitals than for t2g. This may be easily ex-
plained by the fact that the eg hopping is slightly smaller than
t for the relevant orbital states 1 /�2��z	� �x	�, while all other
hopping processes are frustrated by AO order �5.28�. Conse-
quently, correlations have a stronger impact on eg electrons
and induce a slightly enhanced mstagg. Finally, we would like
to emphasize that the AO is 2D in all three models, in spite
of the fact that the kinetic energy is strongly anisotropic in
the orbital models and actually has a 1D nature in the t2g
model; see below.

Before we analyze the spectral functions, let us recall that
the VCA �Ref. 37� is appropriate for models with on-site
interactions, as for instance present Hubbard model �5.1� for
t2g orbitals, but cannot be easily implemented for models
where the interacting part connects different sites, such as in
the t-J �or strong-coupling� model. For present t2g model
�5.1� we use VCA with commonly used37 open boundary
conditions, which leads to the spectral densities depicted in
Fig. 12. The results resemble very much the SCBA results of
Fig. 9 for strong-coupling model �5.2�, suggesting that not
only both models are indeed equivalent in the strongly cor-
related regime, but also that the implemented SCBA method
of Sec. V C is of a very good quality. The differences be-
tween them, almost exclusively affecting high-energy fea-
tures, are discussed below.

On one hand, we see that the high-energy part of the
spectral density in Fig. 9 is composed of a number of peaks
with a dispersion almost parallel to that of the QP state. In
fact, the spectrum corresponds almost exactly to the ladder
spectrum of the spin t-J model with Ising superexchange,4,5

but with a weak dispersion added to the peaks. The peaks at
higher-energy are dispersive for the same reason as the QP
state. After hopping a few times by NN hopping t—and cre-
ating string excitations �see Fig. 7�—the hole can exhibit
coherent propagation via three-site terms, leading to the ob-
served dispersion. On the other hand, the VCA spectrum
�Fig. 12� does not show these distinct peaks and the structure
of A�k ,�� is richer. However, the first moments calculated in
separate intervals of � follow similar dispersions obtained
for the first three peaks obtained in A�k ,�� within the
SCBA.15

The above difference can be understood as following
from the full Hilbert space used in the VCA calculations,
which results in excitations of doubly occupied sites, weak-
ening of the AO order even for relatively large U=10t �see
Fig. 11�. Therefore, the spectra of Fig. 12 have more inco-
herent features. In addition, the three-site terms, which create
two orbiton excitations �5.6� that were neglected in the
SCBA, might also influence the high-energy part of the spec-
trum. The difference to the SCBA results might also be due

to the fact that states with longer strings including several
orbital excitations, which occur when the hole moves by a
few steps via t, cannot be directly accommodated within the
ten-site cluster solved here, and cannot be reproduced with
sufficient accuracy.

Apart from the differences in the high-energy part of the
spectrum, we also observe differences in the spectral weight
distribution �see also the detailed discussion below in Sec.
V E�: In the VCA results �Fig. 12� the total weight found in
photoemission part �hole excitation� strongly depends on
momentum k, while no such variation can be seen in the
SCBA results in Fig. 9. This difference does not originate
from different approximate methods used, but stems from the
different models: in Hubbard-type models, the number of
electron states occupied depends on the momentum k.56 In
contrast, undoped t-J-like models have exactly one electron
per site, which enforces a different sum rule and eliminates
the k dependence from the photoemission part.

E. Discussion of quasiparticle properties

In order to get a deeper understanding of the problem
mentioned in the last paragraph of Sec. V D, let us consider
first the overall spectral weight distribution obtained in the
VCA calculations. It is measured by the momentum-
dependent electron occupation
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FIG. 12. Spectral function A�k ,�� obtained with VCA for 2D
t2g Hubbard model �5.1� for �a� a orbitals, and �b� b orbitals. Pa-
rameter: U=10t.
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n��k�  �ck�
† ck�	 , �5.29�

obtained for the � flavor in the Hubbard model, as for in-
stance t2g model �5.1�. We recall that Eq. �5.1�, which leads
in the limit U� t to 2D t2g model �5.2�, is rather different
from the one obtained for the spin Hubbard model with the
SU�2� symmetry �see Fig. 13�. One may easily identify the
quasi-1D dependence only on kx in the b orbital momentum
dependence nb�k� shown in Fig. 13�a�, in contrast to the 2D
variation in n��k� in the spin case with isotropic hopping of
Fig. 13�b�.

The insets of Fig. 13 show which states are occupied at
U=0 in the two models, and indicate the difference between
the isotropic 2D hopping of the spin model and the 1D ki-
netic energy of the orbital model. For instance, n��k�=0.5
along the �0,��−−�� ,0� line for spins, while it shows full
variation along this line in the orbital case. In both cases, we
observe strong modifications of the electron distribution with
increasing U. For U=0, the states below the Fermi surface
�k�SF� are occupied and states above it �k�” SF� are empty.
Consequently, n��k� is given by a step function with n��k�
=1 for k�SF and n��k�=0 for k�” SF. The changes are par-
ticularly fast in the range of U�8t; for U	8t the momen-
tum distribution function n��k� �Eq. �5.29�� smears out and
one recognizes the strong-coupling regime. However, the dif-
ference between n��k= �0,0�� and n��k= �� ,��� is larger in
the spin model, suggesting that the correlation effects are
stronger in the orbital case. Indeed, this follows from the 1D
character of the kinetic energy in the orbital model. In con-
trast, both strong-coupling models �for spin or orbital fla-
vors� would give at half filling a constant n��k�=0.5 even for
finite U�, although this result is strictly speaking correct
only at U=�, as shown in Fig. 13.

After understanding the differences between the QP prop-
erties found in the VCA and the SCBA, we concentrate
solely on the QP properties calculated using the latter
method. Hence, following Ref. 5, we analyze the character-
istic features of the QP states in the 2D t2g model, such as the
bandwidth W and the QP spectral weight aQP. The energy of
incoherent excitations �string states� is to some extent char-
acterized by the separation between the QP state and the next
�second� spectral feature at higher energy—it is called here a

pseudogap �. All these quantities increase with increasing
superexchange energy J ��=J /4�, see Fig. 14. One finds that:
�i� the bandwidth W1 of the first QP peak �see Fig. 14�a�� is
proportional to J2 for small J �J0.7� and to J in the regime
of large J �J	0.7�—the bandwidth renormalization is dis-
tinct here from the one found either in the spin SU�2� �see
Ref. 5� or in the orbital eg models;14 �ii� the bandwidth W2 of
the second largest dispersive peak �Fig. 14�a�� is smaller than
that for the first peak and tends to saturate at W2�0.25t
value for larger J	 t �not shown�; �iii� the spectral weight
aQP of the QP peak, shown in Fig. 14�b�, grows with J; and
�iv� the pseudogap � shown in Fig. 14�c� grows generally
like J2/3, while for higher J values some deviation from this
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FIG. 14. �Color online� Quasiparticle properties obtained for the
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law is observed for the k= �0,0� point. Most �but not all� of
these results are qualitatively different from the ones ob-
tained for the QP states, and their momentum dependence, in
the SU�2� Heisenberg antiferromagnet. Let us now discuss
the above-mentioned QP properties in more detail.

First, the QP bandwidth arising from the superexchange
three-site terms is renormalized as it is much smaller than the
respective free value, W�2J. Even at J= t, the QP band-
width is only W�J /2, i.e., is here reduced by a factor of 4.
This is not surprising in the view of incoherent processes
which “dress” the propagating hole and increase its effective
mass. Indeed, the collapse of the QP bandwidth in the regime
of J→0 may be understood as following from numerous
incoherent string excitations, which are easy in this regime
as they do not cost much energy. A similar but considerably
weaker reduction in the 1D dispersion by string excitations
was seen before in the centipede model �see Fig. 6�a��. How-
ever, in that case the renormalization was almost linear as the
length of the string excitations was limited to a single step
�within one of the three-atom units along the chain�, and
could not further increase with decreasing J. In addition, the
dispersion of the second peak is weaker than that of the QP.
Interestingly, the bandwidth corresponding to the dispersion
of the second peak in the centipede model is not only weaker
than that of the QP itself, but is also renormalized in a similar
way to that found for the full 2D t2g model. Altogether, this
suggests that the bandwidth renormalization of the coherent
hole propagation in the 2D t2g strong-coupling model follows
from the creation of string states during the 1D hole propa-
gation via three-site terms. Such processes are absent in the
1D and 2D FK models, and therefore, the hole moves there
freely by three-site hopping terms and the bandwidth is un-
renormalized.

Second, in contrast to the spin t-J model with Ising super-
exchange interactions,5 where the QP spectral weight is in-
dependent of k, it varies here with the component �kx or ky�
of the momentum k �cf. Fig. 14 as well as Figs. 9 and 12�.
Similar to the spin t-J model, the QP spectral weight is larger
for the k values with the lowest QP energies than for the
ones close to the maximum in QP dispersion, for instance
aQP�� /2,� /2�	aQP�0,0� �see Fig. 14�b��. Altogether, the k
dependence here is however much weaker than in the spin
case.5 The increase in aQP�� /2,� /2� with J / t resembles the
increase in the spectral weight for the low-energy peak at k
=� /2 in the centipede model; see Fig. 6�b�.

Finally, we address the issue of the pseudogap which
separates the QP state from the first incoherent excitation. It
scales almost as t�J / t�2/3 �see Fig. 14�c�� in agreement with
the result for the Ising spin model.5 This demonstrates that in
spite of the observed k dependence of the QP properties and
the pseudogap itself, the pseudogap originates from string
excitations similar to those generated by the hole moving in
the spin background with AF order. Note also that the spec-
trum of the 2D model with dense distribution of incoherent
maxima in the range of J→0 is qualitatively different from
the 1D centipede model, shown in Fig. 5�b�.

VI. PHOTOEMISSION SPECTRA OF VANADATES AND
FLUORIDES

In this section we discuss the possible implications of the
results obtained for the t2g orbital model of Sec. V on future

experiments, and make predictions concerning the photo-
emission spectra of strongly correlated fluorides and vana-
dates. As before, we discuss the strongly correlated regime
with U� t. The first important feature to consider is the in-
terplay of the three-site hopping with the longer-range �t2 , t3�
hopping to second and third neighbors, which contributes to
the electronic structure and may always be expected in any
realistic system �for instance, due to hybridization with oxy-
gen orbitals�. These hopping elements were neglected in both
Hubbard model �5.1� and strong-coupling model �5.2�, but
they could significantly influence the spectral weight distri-
bution. We will see, however, that although features induced
by longer-range hopping are small as long as �t2�3�� t, they
can be clearly distinguished from the effects of three-site
hopping.

The same requirements for orbital symmetry that are nec-
essary to obtain NN hopping, as discussed in this work, also
strongly restrict the range of allowed longer-range hopping
terms. It is important to recall that the d-d hopping elements
involve intermediate oxygen orbitals. For next-nearest-
neighbor �NNN� hopping, the orbital phases of the involved
oxygen 2p� orbitals make all terms vanish that conserve or-
bital flavor,12 and only orbital-flipping terms,

HNNN = − t2�
i

�a
i�b̂

†
bi�â + a

i�b̂

†
bi�â + H.c.� , �6.1�

given by hopping element t2, are finite. With realistic param-
eters, we arrived at the estimation of �t2��20 meV, i.e.,
�t2��J /3. Similar to the orbital-flipping three-site term �Eq.
�5.6��, such a hopping process disturbs the AO order stabi-
lized by the superexchange and induces string excitations.
For this reason, its impact is largely confined to the high-
energy part of the spectrum and is rather small for the low-
energy QP state. This can be seen in Fig. 15, where we show
the spectral density for t2=0.15t and J=0.4t: while the
higher-energy part is somewhat affected by finite t2, the in-
tensity and dispersion of the low-energy QP is almost the
same as obtained for t2=0 �see Fig. 12�b��.

The QP dispersion could also be influenced by the third-
neighbor hopping terms t3, where the orbital symmetry leads
to the same anisotropy as for NN hopping: a orbitals allow
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FIG. 15. Spectral density Ab�k ,�� obtained within the VCA
method for a hole inserted into b orbitals of t2g model �5.1�, supple-
mented by finite NNN hopping �6.1�. Parameters: U=10t, and t2

=0.15t.
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only hopping along the a axis, and b orbitals only along the
b one,

Ht3
= − t3 �

�imj��a
bi

†bj − t3 �
�imj��b

ai
†aj . �6.2�

Here the unit consisting of three sites �imj�, shown in Fig.
7�a�, is parallel to one of the cubic axes in the �a ,b� plane. In
contrast to t2 terms, these terms do not induce any string
excitations but contribute only to the QP state itself so they
mix with the three-site effective hopping �. To illustrate this
effect, we have chosen t3= �J /4 for the spectra shown in
Fig. 16. Note that the value of �t3� here is larger than ex-
pected in transition-metal oxides, where it is in general
smaller than the three-site hopping term �=J /4. The spectral
density A�k ,�� contains now the combined effects of the
three-site terms �� and third-neighbor hopping �t3, and one
finds that t3, depending on its sign, can either amplify or
weaken the QP dispersion which stems from the effective
three-site hopping �see Fig. 16�.

From the above example we have seen that the longer-
range hopping violates the particle-hole symmetry of the
spectral functions. The spectra obtained for the original or-
bital Hubbard model �Eq. �5.1�� with NN hopping t obeying
the particle-hole symmetry. The three-site superexchange
terms arise from this model, and therefore, these terms also
have to follow the particle-hole symmetry. This is in marked
contrast to the t2 terms that do not respect it,57 or to t3 terms
�see Fig. 16�. As a result, the spectra exhibit a striking
particle-hole asymmetry—reduced dispersion in the particle
�inverse photoemission� sector corresponds to enhanced dis-
persion in the hole �photoemission� sector and vice versa.

We will show now that the above asymmetry follows in-
deed from the difference between the NN and NNN hop-
pings under particle-hole transformation. While this is trans-
parent for the Hubbard model acting in the full Hilbert space,
it is somewhat subtle for the t-J-like models. Thereby we
focus on the t3 hopping which influences directly the QP
dispersion. The operator for NN hopping can be transformed
from �cr ,cr

†� electron operators to �hr
† ,hr� hole operators, and

one arrives at an identical form for the kinetic energy, as long
as a phase shift between the two sublattices is introduced,

hr
† = �− 1��rx+ry�cr, hr = �− 1��rx+ry�cr

†, �6.3�

where r= �rx ,ry� is the lattice site. Hopping along the a axis
then becomes

Kx = �
r

�cr
†cr+â + cr+â

† cr�

= �
r

��− 1�rx+ryhr�− 1�rx+1+ryhr+â
† + �− 1�rx+1+ryhr+â

��− 1�rx+ryhr
†� = − �

r
�hrhr+â

† + hr+âhr
†�

= �
r

�hr
†hr+â + hr+â

† hr� , �6.4�

and analogously along the b axis. The minus sign for one of
the sublattices corresponds to a momentum shift by q
= �� ,��, as can be easily verified in the Fourier transform,

hk
† =

1

N
�

r
eikr�− 1��rx+ry�cr =

1

N
�

r
ei�k+q�rcr = ck+q.

�6.5�

The on-site density-density interaction is not affected by the
particle-hole transformation, apart from a shift in the chemi-
cal potential.

Since the three-site hopping emerges from the Hubbard-
type model with NN hopping, it respects particle-hole sym-
metry. Hence it obeys the same rules concerning particle-
hole transformation, i.e., momentum �0,0� for electrons is
mapped to �� ,�� for holes. For the third-neighbor hopping t3
�Eq. �6.2��, however, the above transformation no longer
works because both the creation and the annihilation opera-
tor act on the same sublattice. Instead the transformation
vector would have to be q�= �� /2,� /2�. Consequently, the
combined effect of explicit NNN hopping and three-site
terms stemming from NN processes turns out to be strongly
particle-hole asymmetric. For example, negative t3 gives a
band in the electron sector with the largest distance from the
Fermi energy at momenta �0,0� and �� ,��, and the values
nearest to it at �� /2,� /2�, and the same is true for the three-
site hopping. Consequently, the two dispersions add together
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FIG. 16. Photoemission ���−��0� and inverse photoemission ���−��	0� part of the spectral density Ab�k ,�� for a hole inserted into
b orbitals, obtained within VCA for t2g model �5.1� with an additional longer-range third-neighbor hopping t3 �6.2�. The value t3 was selected
to suppress dispersion arising from three-site effective hopping �5.5� �a� in the hole �photoemission� sector with t3=0.1t=J /4, and �b� in the
inverse photoemission sector with t3=−0.1t=−J /4. Parameter: U=10t.

SPECTRAL PROPERTIES OF ORBITAL POLARONS IN… PHYSICAL REVIEW B 78, 214423 �2008�

214423-19



and lead to increased total dispersion �see the photoemission
part in Fig. 16�b��. On the contrary, in inverse photoemission
the direct NNN hopping t3 gives a maximal distance at
�� /2,� /2�, while maximal energy is still found at �0,0� and
�� ,�� for the three-site terms. Therefore, now t3 and three-
site hopping � compete with each other, and the dispersion is
weaker. For a particular choice of the model parameters they
can even cancel each other, as shown in the inverse photo-
emission part in Fig. 16�b�. Positive t3 leads to the opposite
result �see Fig. 16�a��. Thus, the qualitative spectra predicted
in Sec. V remain intact even for large and unphysical values
of t3. In addition, we find a marked asymmetry between the
photoemission and inverse photoemission part of the spectra
so their contribution can easily be resolved.

The symmetry arguments leading to Eqs. �6.1� and �6.2�
remain valid also for systems with specific eg orbital degen-
eracy, as observed in certain fluorides with 2D AO order
which involves alternating z2−y2 and x2−z2 orbitals.29 In
fact, the orbital model given by Eq. �5.2� describes also this
case, as we show by a detailed derivation in the Appendix.
Hence, we conclude that the photoemission and inverse pho-
toemission spectra for the planar vanadium oxide Sr2VO4
and for the planar K2CuF4 or Cs2AgF4 fluorides should be
qualitatively similar to the spectral functions shown in Fig. 9
and 12.

VII. SUMMARY AND CONCLUSIONS

In this paper we analyzed only the orbital sector of the
superexchange, which decides about the hole dynamics when
spins are polarized in the FM ground state. We discussed all
possible situations �see below� where the orbital symmetry
leads to the purely Ising superexchange in one and two di-
mensions. Exceptions from this rule are numerous systems
with eg orbital degrees of freedom,7–9 or FM chains with two
active orbitals,48,58 but we also provided examples of eg sys-
tems with Ising superexchange.

The 1D Hubbard-type model with two orbital flavors, but
only one of them participating in NN hopping, served to
explain the general principles and consequences of the Ising-
type superexchange. Furthermore, this model stands for sev-
eral physically relevant situations, including electrons mov-
ing within either eg or t2g orbitals in one dimension, and the
1D FK model. We have shown that, particularly in all these
cases, the relevant strong-coupling model has to include the
three-site effective hopping. When both interorbital hopping
and orbital-flip processes in the superexchange are absent,
the three-site hopping term which arises from superexchange
is crucial and is the only source of coherent hole propaga-
tion.

We have shown that the 2D FK model with one immobile
�f� and one mobile �d� orbital has many common features
with the 1D model. In both cases one finds only one disper-
sive mode for a hole inserted into the mobile orbital, and two
non-dispersive modes for a hole doped in the immobile or-
bital. This latter hole excitation creates a trapped polaron,
with the hole confined within a cluster consisting of a central
site and its nearest neighbors �i.e., three sites in the 1D
model, and five sites in the 2D model�. While the hole can in

principle escape from the polaron via three-site hopping pro-
cess, we have shown that such processes have only very low
spectral weight in the realistic regime of parameters, and
thus, the hole remains de facto trapped inside the polaron. In
contrast to this almost perfectly localized hole, a hole in the
mobile orbital propagates freely, and its dispersion which
originates from the three-site hopping is unrenormalized.
Therefore, the two inequivalent orbital flavors behave in the
FK models in a radically different way, and decouple from
each other �interacting only by the on-site Coulomb interac-
tion U, which stabilizes the AO ground state�.

The model relevant for the 2D orbital physics in
transition-metal oxides leads, however, to qualitatively dif-
ferent results. In the 2D t2g orbital model, which is also ap-
plicable to the AO state formed by eg orbitals in fluorides
�see the Appendix�, electrons do not separate into those con-
fined to either sublattice �occupied by orbitals of particular
symmetry in the ground state with AO order�, but may delo-
calize over the lattice and thereby undergo incoherent scat-
tering on the orbital excitations, which strongly renormalizes
and reduces the dispersion of the QP states. These QP states
arise at half filling in the regime of large Coulomb interac-
tion U when a hole �electron� is added to the ground state
with AO order. While electron hopping is of the purely 1D
character, it selects by symmetry possible three-site pro-
cesses, which are responsible for the QP dispersion. There-
fore, the dispersion of the QP state depends on the consid-
ered orbital and is again 1D, with a hole propagating
coherently along the two crystal axes for the two orbitals.

We emphasize that the mechanism of coherent hole
propagation, which occurs in the 2D t2g orbital model, is
completely different from the one known in the spin case. In
orbital systems �with conserved orbital flavors� it originates
entirely from the three-site hopping processes, similar to hole
propagation in the 1D or 2D FK model. But unlike in the
latter models, in the 2D t2g case the QP bandwidth is strongly
reduced from the value given by the amplitude of bare three-
site hopping. We have explained this renormalization as fol-
lowing from incoherent string excitations which dress the
coherent propagation and do not contribute additional mo-
mentum dependence. As a special case, we have discussed
the subtle interplay between the coherent hole propagation
and string excitations in the 1D centipede model, where po-
laronic hole confinement competes with coherent propaga-
tion along the chain, and which to some extent resembles the
realistic 2D t2g case.

We discussed the impact of realistic longer-range hopping
terms �as expected in real materials such as vanadates or
fluorides�, and found that the second-neighbor terms are frus-
trated in the ground state with AO order—these processes
would flip the orbital flavor and are, therefore, suppressed at
low energy, not affecting the QP dispersion. In contrast,
third-neighbor hopping processes conserve orbital flavor and
lead to a pronounced particle-hole asymmetry in the spectral
weight distribution. In both cases, the 1D character of hole
propagation, which follows from the symmetry of involved
orbitals, survives and determines the character of the spectral
density at low energy.

In summary, we have demonstrated that orbital models
with Ising superexchange describe a broad class of interest-
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ing phenomena. Spectral features resulting from such models
exhibit weak momentum dependence and are fundamentally
different from those known from the spin case with the
SU�2�-symmetric superexchange. The predictions of the
theory presented in this paper provide an experimental chal-
lenge for the transition-metal oxides with orbital degrees of
freedom, where similar features could possibly be observed
in FM planes with AO order.
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APPENDIX: STRONG-COUPLING MODEL FOR
FLUORIDES

Here we show that the model developed in Sec. V may
also be applied to certain fluorides with FM planes and AO
order. In contrast to the t2g orbitally degenerate systems, in
the systems with eg orbital degeneracy the lattice distortions
in the cubic phases are usually quite large. In particular, the
static distortions may counteract to some extent the AO order
favored by the superexchange interactions as, e.g., in un-
doped manganites RMnO3 �Ref. 9� or fluorides Cs2AgF4.29

However, the crystal field does not suppress the orbital order
present in these systems but instead it only modifies the oc-
cupied orbitals which form the AO state. They have to be
optimized in a microscopic model by choosing particular lin-
ear combinations of the eg orbitals, which form the AO order,
in order to fit best to the superposition of the superexchange
and the Jahn-Teller terms generated by ligand fields.49 In
certain situations this “modification” could be quite substan-
tial and could even lead to such a selection of such eg orbitals
that the resulting state is modified to a ferro-type orbital
order.7

At finite crystal-field splitting �Ez, it is convenient to de-
scribe the changes in the occupied orbital states by making
two complementary transformations at both sublattices,7 ro-
tating the orbitals by an angle �= �

4 −� on sublattice A and
by an angle �= �

4 +� on sublattice B so that the relative angle
between the occupied orbitals is �

2 −2� and decreases with
increasing �, i.e., with increasing Ez,

���	i

��	i
� =� cos��

4
− �� sin��

4
− ��

− sin��

4
− �� cos��

4
− �� ���z	i

�x	i
� ,

�A1�

���	 j

��	 j
� =� cos��

4
+ �� sin��

4
+ ��

− sin��

4
+ �� cos��

4
+ �� ���z	 j

�x	 j
� ,

�A2�

where the “old” orthogonal �basis� orbitals are defined as

�x	i=
1
�2

�x2−y2	i and �z	i=
1
�6

�3z2−r2	i for every sublattice site
i. Due to the above transformation the AO order is formed
now by ��	i and ��	 j occupied orbitals at sublattices, i�A
and j�B, respectively. Let us stress that although the trans-
formation defined by Eqs. �A1� and �A2� is orthogonal, this
does not mean that orbitals on different sublattices, such as,
e.g., the occupied orbitals ��	i and ��	 j, are orthogonal for
any arbitrary angle �.

For the 2D FM systems with active eg orbitals which are
considered here, the relation between the crystal field Ez and
the optimal orbital configuration defined by the angle � �see
Eqs. �12� and �13� of Ref. 7� is given by

Ez = 4J sin 2� , �A3�

where J is the superexchange constant. In the case of fluo-
rides such as Cs2AgF4 �Ref. 29� or K2CuF4 �Ref. 28� dis-
cussed here, the filling is one eg electron per site, and the
crystal field would select the angle �=� /12 �for the reason
of looking at this angle see below� since the convenient basis
adapted to the actual AO order looks as follows:

∀i � A: ���� =
�

12
��

i

=
1
�2

�y2 − z2	i  �x	i,

���� =
�

12
��

i

=
1
�6

�3x2 − r2	i  �z	i,

∀ j � B: ���� =
�

12
��

j

=
1
�6

�3y2 − r2	 j  �z	 j ,

���� =
�

12
��

j

=
1
�2

�x2 − z2	 j  �x	 j , �A4�

where the occupied �empty� orbitals for this type of AO or-
der are denoted as �x	 ��z	� on both sublattices.

The reason why these particular pairs of basis orbitals in
Eq. �A4� are interesting here is that this is the only choice of
occupied eg flavors which forms a two-sublattice AO order
with the interorbital hopping between occupied orbitals van-
ishing by symmetry, and where the interactions described by
pseudospin operators do not allow for any quantum fluctua-
tions. This resembles the t2g case discussed in this paper.
There is, however, one subtle difference: two occupied
��x	i , �x	 j� orbitals on sublattices A and B are not orthogonal
and do not form the global basis in the eg orbital space. The
choice made in Eq. �A4� means that we consider two differ-
ent pairs of orbitals for both sublattices, and the interorbital
hopping between the unoccupied orbitals is also rather small
but remains finite.59 Hence, the respective strong-coupling
Hamiltonian is richer than the one for the t2g case, and we
need to check under which conditions it can be reduced to a
similar polaron Hamiltonian as Eq. �5.8�.

The eg orbital t-J Hamiltonian for the FM planes without
the three-site terms but including the crystal field was given,
e.g., in Ref. 60. Here we rewrite the kinetic term in a slightly
different form �there it was written already using the polaron
representation� and substitute �=� /12 to obtain
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Heg
= Ht + HJ + Hz, �A5�

where

Ht = −
1

2
t�

i

�z̃i
†z̃i+â + z̃i

†z̃i+b̂ + H.c.� −
�3

2
t�
i�A

�z̃i
†x̃i+â + z̃i

†x̃i+b̂

+ H.c.� −
�3

2
t�
i�B

�x̃i
†z̃i+â + x̃i

†z̃i+b̂ + H.c.� , �A6�

HJ =
1

2
J �

�ij	�â
�Ti

zTj
z + �3Ti

zTj
x� +

1

2
J �

�ij	�b̂

�Ti
zTj

z − �3Ti
xTj

z� ,

�A7�

Hz = −
1

4
J�

i�A

�Ti
z + �3Ti

x� +
1

4
J�

i�B

�Ti
z − �3Ti

x� . �A8�

Here Ti
z= 1

2 �ñiz− ñix� for i�A, Tj
z= 1

2 �ñjx− ñjz� for j�B, and
Ti

x= 1
2 �x̃i

†z̃i+ z̃i
†x̃i� for every site i �see Ref. 7�. As before, a

tilde above a fermion operator indicates that the Hilbert
space is restricted to unoccupied and singly occupied sites,
e.g., x̃i

†=xi
†�1−niz�. The last term Hz represents the above-

mentioned crystal field with the strength of the interaction
written according to Eq. �A3� with �=� /12.

However, we are not aware of any work where the three-
site terms complementing such a t-J model have been de-
rived. We use second again order perturbation theory16,33 ap-
plied to the Hubbard model for spinless eg electrons in a FM
plane,13 with the basis rotated by �=� /12, following Eqs.
�12� and �13� of Ref. 7. This leads to the following three-site
terms for the eg strong-coupling model �with �=� /12�:

H� = H�
a + H�

b + H�
ab, �A9�

where

H�
a = −

1

4
��

i�A

�z̃i−â
† ñixz̃i+â + 3x̃i−â

† ñixx̃i+â + �3x̃i−â
† ñixz̃i+â

+ �3z̃i−â
† ñixx̃i+â + H.c.� −

1

4
��

i�B

�z̃i−â
† ñixz̃i+â + 3z̃i−â

† ñizz̃i+â

− �3z̃i−â
† z̃i

†x̃iz̃i+â − �3z̃i−â
† x̃i

†z̃iz̃i+â + H.c.� , �A10�

H�
b = −

1

4
��

i�A

�z̃
i−b̂

†
ñixz̃i+b̂ + 3z̃

i−b̂

†
ñizz̃i+b̂ − �3z̃

i−b̂

†
z̃i

†x̃iz̃i+b̂

− �3z̃
i−b̂

†
x̃i

†z̃iz̃i+b̂ + H.c.� −
1

4
��

i�B

�z̃
i−b̂

†
ñixz̃i+b̂

+ 3x̃
i−b̂

†
ñixx̃i+b̂ + �3x̃

i−b̂

†
ñixz̃i+b̂ + �3z̃

i−b̂

†
ñixx̃i+b̂ + H.c.� ,

�A11�

H�
ab = −

1

4
��

i�A

�z̃i�â
† ñixz̃i�b̂ − 3x̃i�â

† x̃i
†z̃iz̃i�b̂ + �3x̃i�â

† ñixz̃i�b̂

− �3z̃i�â
† x̃i

†z̃iz̃i�b̂ + z̃i�â
† ñixz̃i�b̂ − 3x̃i�â

† x̃i
†z̃iz̃i�b̂

+ �3x̃i�â
† ñixz̃i�b̂ − �3z̃i�â

† x̃i
†z̃iz̃i�b̂ + H.c.�

−
1

4
��

i�B

�z̃i�â
† ñixz̃i�b̂ − 3z̃i�â

† z̃i
†x̃ix̃i�b̂ + �3z̃i�â

† ñixx̃i�b̂

− �3z̃i�â
† z̃i

†x̃iz̃i�b̂ + z̃i�â
† ñixz̃i�b̂ − 3z̃i�â

† z̃i
†x̃ix̃i�b̂

+ �3z̃i�â
† ñixx̃i�b̂ − �3z̃i�â

† z̃i
†x̃iz̃i�b̂ + H.c.� . �A12�

Here we underlined �doubly underlined� terms which do not
require orbital excitations �require orbital excitations�, re-
spectively, i.e.,

H�
�0� = H�, H�

�1� = H�. �A13�

Next, we perform the same standard transformation to
obtain the polaron Hamiltonian from the strong-coupling
model5 for the lightly doped ordered states as done in Sec.
V C, i.e., we introduce boson operators �i �orbitons� and
fermion operators hi �holons� which are related to the xi and
zi operators in the following way:

x̃i
†  hi�1 − �i

†�i�, z̃i
†  hi�i

†. �A14�

Please note, however, that here we did not have to perform
rotation of the pseudospins since we defined distinct electron
operators for the occupied and empty orbitals �cf. Eq. �A4��.

Again we implement a linear orbital-wave approximation7

�we keep only linear terms in orbiton operators� and we skip
�1−hi

†hi� operators �which in fact is not an approximation if
there is only one hole in the entire plane�. This means that,
e.g., the three-site terms are reduced only to the terms which
were either underlined or doubly underlined in Eqs.
�A10�–�A12�, i.e., to either H�

�0� or H�
�1�. Here, however, we

have to use yet another approximation which was unneces-
sary for the t2g model: we skip terms H�

�1� which were absent
in Sec. V B. This approximation is allowed since these terms
contribute to the vertex as �� and not as �t, resulting typi-
cally in much reduced energy scale for the new vertex con-
tributions. Furthermore, we showed in Sec. VI that such
terms �cf. Eq. �6.2� and Fig. 15� do not change the energy of
the QP and merely modify the incoherent spectrum. Eventu-
ally, we arrive at the polaron Hamiltonian for the holes
doped into the eg orbitals of the fluorides, with the hopping
terms

Ht = �3t
1

�N
�
k,q

�cos�kx − qx�hkA
† hk−q,B�qA

+ cos�ky − qy�hkB
† hk−q,A�qB + H.c.� , �A15�
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H�
�0� =

3

2
��

k

�cos�2ky�hkA
† hkA + cos�2kx�hkB

† hkB� ,

�A16�

and the remaining terms resulting in the energy renormaliza-
tion

HJ + Hz =
3

4
J�

k

��kA
† �kA + �kB

† �kB� . �A17�

Therefore, the Hamiltonian given by Eqs. �A15�–�A17� re-
duces to polaron Hamiltonian �5.8� after substituting �3t /2
→ t, and consequently 3J /4→J and 3� /4→�. This substitu-

tion stems from the different definitions of the hopping t in
the eg and in the t2g systems—in the former case it is the
�dd�� hopping between the 3z2−r2 orbitals along the ĉ di-
rection, whereas in the latter case it is the hopping element
between a pair of active t2g orbitals, e.g., yz orbitals in the
�a ,b� plane.

In summary, we have shown that the Hamiltonian given
by Eqs. �A15�–�A17� provides the framework to analyze the
behavior of certain lightly doped eg systems, with FM planes
and AO order which suppresses the interorbital hopping be-
tween occupied orbitals. Its equivalence to polaron model
�5.8� demonstrates that the results obtained and discussed in
Sec. V should also apply to the case of a hole doped into the
fluoride plane with the AO ordered eg orbitals.
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